Skip to main content
Log in

A novel biodegradable external mesh stent improved long-term patency of vein grafts by inhibiting intimal–medial hyperplasia in an experimental canine model

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objectives

Increased hemodynamic stress on vein grafts used in the arterial system is associated with vein graft disease. We determined whether a novel biodegradable external mesh stent could inhibit medial–intimal hyperplasia by suppressing hemodynamic stress on vein grafts and improve long-term patency.

Methods

Twenty-four beagles underwent bilateral femoral interposition grafting using reversed femoral veins. Vein grafts were externally supported by a novel poly l-lactide-ε-caprolactone copolymer (P(LA/CL)) biodegradable mesh stent or a nonabsorbable mesh stent. Vein grafts with no reinforcement were used as controls. The grafts were harvested 6 and 12 months after implantation for morphometric and immunohistochemical assessment.

Results

The endoluminal circumferential vein graft length was smaller in the P(LA/CL) and nonabsorbable groups (17.2 ± 2.9 and 19.0 ± 0.3 mm, respectively), than that in the control group (25.0 ± 2.6 mm, P < 0.01) at 12 months. The mean intimal–medial thickness was thinner in P(LA/CL) and nonabsorbable stent groups (0.18 ± 0.05 and 0.16 ± 0.05 mm, respectively), than that in the control group (0.30 ± 0.08 mm, P < 0.01). Differences in the intimal–medial thickness among the groups were associated with the magnitude of cellular proliferating activity. The graft patency ratio (100 %) was higher in the P(LA/CL) group than that in the nonabsorbable and control groups (72.2 and 63.6 %, respectively, P < 0.05).

Conclusions

The biodegradable P(LA/CL) external mesh stent improved vein graft patency for 12 months and prevented vein graft dilatation and intimal hyperplasia associated with suppressed neointimal layer cellular proliferating activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Masuda M, Kuwano H, Okumura M, Amano J, Arai H, Endo S, Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Tokyo, Japan, et al. Erratum to: Thoracic and cardiovascular surgery in Japan during 2012: Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2015;63:120–2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masuda M, Kuwano H, Okumura M, Amano J, Arai H, Endo S, Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Tokyo, Japan et al. Thoracic and cardiovascular surgery in Japan during 2012: annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2014;62:734–764. Review. Erratum in: Gen Thorac Cardiovasc Surg. 2015;63:120–122.

  3. Muneretto C, Negri A, Manfredi J, Terrini A, Rodella G, ElQarra S, et al. Safety and usefulness of composite graft for total arterial myocardial revascularization: a prospective randomized evaluation. J Thorac Cardiovasc Surg. 2003;125:826–35.

    Article  PubMed  Google Scholar 

  4. Bourassa MG, Campeau L, Lespérance J, Grondin CM. Changes in grafts and coronary arteries after saphenous vein aortocoronary bypass surgery: results at repeat angiography. Circulation. 1982;65(Suppl II):II90–7.

    Article  Google Scholar 

  5. Campeau L, Enjalbert M, Lespérance J, Vaislic C, Grondin CM, Bourassa MG. Atherosclerosis and late closure of aortocoronary saphenous vein grafts: sequential angiographic studies at 2 weeks, 1 year, 5 to 7 years, and 10 to 12 years after surgery. Circulation. 1983;68(Suppl II):II1–7.

    PubMed  CAS  Google Scholar 

  6. Dobrin PB, Littooy FN, Endean ED. Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery. 1989;105:393–400.

    PubMed  CAS  Google Scholar 

  7. Golledge J, Turner RJ, Harley SL, Springall DR, Powell JT. Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow. J Clin Invest. 1997;99:2719–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Predel HG, Yang Z, von Segesser L, Turina M, Bühler FR, Lüscher TF. Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet. 1992;340:878–9.

    Article  PubMed  CAS  Google Scholar 

  9. Zwolak RM, Adams MC, Clowes AW. Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg. 1987;5:126–36.

    Article  PubMed  CAS  Google Scholar 

  10. Pedroso PD, Hershey BL, Holman W, Venugopalan R, Anayiotos AS. The hemodynamic effects of compliance, bulging, and curvature in a saphenous vein coronary artery bypass graft model. Technol Health Care. 2003;11:443–55.

    PubMed  Google Scholar 

  11. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood. 1996;88:1525–41.

    PubMed  CAS  Google Scholar 

  12. Parsonnet V, Lari AA, Shah IH. New stent for support of veins in arterial grafts. Arch Surg. 1963;87:696–702.

    Article  PubMed  CAS  Google Scholar 

  13. Karayannacos PE, Hostetler JR, Bond MG, Kakos GS, Williams RA, Kilman JW, et al. Late failure in vein grafts: mediating factors in subendothelial fibromuscular hyperplasia. Ann Surg. 1978;187:183–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Mehta D, George SJ, Jeremy JY, Izzat MB, Southgate KM, Bryan AJ, et al. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat Med. 1998;4:235–9.

    Article  PubMed  CAS  Google Scholar 

  15. Zurbrügg HR, Wied M, Angelini GD, Hetzer R. Reduction of intimal and medial thickening in sheathed vein grafts. Ann Thorac Surg. 1999;68:79–83.

    Article  PubMed  Google Scholar 

  16. Angelini GD, Izzat MB, Bryan AJ, Newby AC. External stenting reduces early medial and neointimal thickening in a pig model of arteriovenous bypass grafting. J Thorac Cardiovasc Surg. 1996;112:79–84.

    Article  PubMed  CAS  Google Scholar 

  17. Zilla P, Human P, Wolf M, Lichtenberg W, Rafiee N, Bezuidenhout D, et al. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. J Thorac Cardiovasc Surg. 2008;136:717–25.

    Article  PubMed  Google Scholar 

  18. Murphy GJ, Newby AC, Jeremy JY, Baumbach A, Angelini GD. A randomized trial of an external Dacron sheath for the prevention of vein graft disease: the Extent study. J Thorac Cardiovasc Surg. 2007;134:504–5.

    Article  PubMed  Google Scholar 

  19. Vijayan V, Smith FC, Angelini GD, Bulbulia RA, Jeremy JY. External supports and the prevention of neointima formation in vein grafts. Eur J Vasc Endovasc Surg. 2002;24:13–22.

    Article  PubMed  CAS  Google Scholar 

  20. Jeremy JY, Gadsdon P, Shukla N, Vijayan V, Wyatt M, Newby AC, et al. On the biology of saphenous vein grafts fitted with external synthetic sheaths and stents. Biomaterials. 2007;28:895–908.

    Article  PubMed  CAS  Google Scholar 

  21. Zweep HP, Satoh S, van der Lei B, Hinrichs WL, Dijk F, Feijen J, et al. Autologous vein supported with a biodegradable prosthesis for arterial grafting. Ann Thorac Surg. 1993;55:427–33.

    Article  PubMed  CAS  Google Scholar 

  22. Bambang LS, Moczar M, Lecerf L, Loisance D. External biodegradable supporting conduit protects endothelium in vein graft in arterial interposition. Int J Artif Organs. 1997;20:397–406.

    PubMed  CAS  Google Scholar 

  23. Jeremy JY, Bulbulia R, Johnson JL, Gadsdon P, Vijayan V, Shukla N, et al. A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. J Thorac Cardiovasc Surg. 2004;127:1766–72.

    Article  PubMed  Google Scholar 

  24. Vijayan V, Shukla N, Johnson JL, Gadsdon P, Angelini GD, Smith FC, et al. Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. J Vasc Surg. 2004;40:1011–9.

    Article  PubMed  Google Scholar 

  25. Tomihata K, Suzuki M, Oka T, Ikada Y. A new resorbable monofilament suture Polm Degra Stabi. 1998;59:13–8.

    Article  CAS  Google Scholar 

  26. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–8.

    Article  PubMed  Google Scholar 

  27. Fujiwara H, Oda K, Saiki Y, Sakamoto N, Ohashi T, Sato M, et al. The wrapping method using biodegradable felt strips has a preventive effect on the thinning of the aortic wall: experimental study in the canine aorta. J Vasc Surg. 2006;43:349–56.

    Article  PubMed  Google Scholar 

  28. Yamada K, Miyamoto S, Takayama M, Nagata I, Hashimoto N, Ikada Y, Kikuchi H. Clinical application of a new bioabsorbable artificial dura mater. J Neurosurg. 2002;96:731–5.

    Article  PubMed  Google Scholar 

  29. Trubel W, Moritz A, Schima H, Raderer F, Scherer R, Ullrich R, Losert U, Polterauer P. Compliance and formation of distal anastomotic intimal hyperplasia in Dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO J. 1994;40(3):M273–8.

    Article  PubMed  CAS  Google Scholar 

  30. Pedroso PD, Hershey BL, Holman W, Venugopalan R, Anayiotos AS. The hemodynamic effects of compliance, bulging, and curvature in a saphenous vein coronary artery bypass graft model. Technol Health Care. 2003;11:443–55.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-aid for scientific research from the Japan Society for the Promotion of Science. The authors express their appreciation to Katsuhiko Oda for his advice during the experiments, Ayako Ono for her superb technical support in performing the animal experiments, and Ichiro Tsuji for his advice on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Kawamoto.

Ethics declarations

Conflict of interest

All of the authors declare that they had no competing interests related to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Kawamoto, S., Watanabe, M. et al. A novel biodegradable external mesh stent improved long-term patency of vein grafts by inhibiting intimal–medial hyperplasia in an experimental canine model. Gen Thorac Cardiovasc Surg 64, 1–9 (2016). https://doi.org/10.1007/s11748-015-0591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-015-0591-2

Keywords

Navigation