Skip to main content
Log in

Preparation of Mangosteen Shell-Derived Activated Carbon Via KOH Activation for Adsorptive Refining of Crude Biodiesel

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Mangosteen shell-derived activated carbons (ACs) were prepared by potassium hydroxide (KOH) activation for refining crude biodiesel derived from the transesterification of waste cooking oil and methanol via an alkali catalyst. Effects of the KOH/char (w/w) ratio (0.50–1.50), activation temperature (500–900 °C), adsorption time (15–180 min) and dosage of activated carbon (3–11 g/L) on the efficiency of the adsorptive refining of biodiesel were explored. The AC prepared at a KOH/char (w/w) ratio of 1.25 at 800 °C exhibited the best ability to remove impurities contained in the crude biodiesel, and enhanced the purity of the biodiesel by up to 97.18 wt% at a dosage of 9 g/L and 120 min adsorption time. This was better than that refined by the conventional wet washing method (96.03 wt%). Equilibrium adsorption data fitted well with Freundlich isotherms, and the adsorption mechanism was controlled by the transport of impurities from the bulk solution to the surface of the AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moraes MSA, Krause LC, Espinosa da Cunha M, Faccini CS, Weber de Menezes E, Veses RC, Rodrigues MRA, Caramão EB (2008) Tallow biodiesel: properties evaluation and consumption tests in a diesel engine. Energ Fuel 22:1949–1954

    Article  CAS  Google Scholar 

  2. McNeill J, Kakuda Y, Kamel B (1986) Improving the quality of used frying oils by treatment with activated carbon and silica. J Am Oil Chem Soc 63:1564–1567

    Article  CAS  Google Scholar 

  3. Berrios M, Skelton RL (2008) Comparison of purification methods for biodiesel. Chem Eng J 144:459–465

    Article  CAS  Google Scholar 

  4. Suehara K, Kawamoto Y, Fujii E, Kohda J, Nakano Y, Yano Y (2005) Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. J Biosci Bioeng 100:437–442

    Article  CAS  Google Scholar 

  5. Department of Alternative Energy Development and Efficiency. Ministry of Energy. [Online 2015] http://www.dede.go.th/dede/index.php?option=com_content&view=article&id=898&Itemid=123&lang=th

  6. Stojković IJ, Stamenković OS, Povrenović DS, Veljković VB (2014) Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew Sustain Energy Rev 32:1–15

    Article  Google Scholar 

  7. Faccini CS, Espinosa da Cunha M, Moraes MSA, Krause LC, Manique MC, Rodrigues MRA, Benvenutti EV, Caramão EB (2011) Dry washing in biodiesel purification: a comparative study of adsorbents. J Brazil Chem Soc 22(3):558–563

    Article  CAS  Google Scholar 

  8. Manique MC, Faccini CS, Onorevoli B, Benvenutti EV, Caramã EB (2012) Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel 92:56–61

    Article  CAS  Google Scholar 

  9. Wang Y, Wang X, Liu Y, Ou S, Tan Y, Tang S (2009) Refining of biodiesel by ceramic membrane separation. Fuel Process Technol 90:422–427

    Article  CAS  Google Scholar 

  10. Nur H, Snowden MJ, Cornelius VJ, Mitchell JC, Harvey PJ, Ben LS (2009) Colloidal microgel in removal of water from biodiesel. Colloid Surfaces A 335:133–137

    Article  CAS  Google Scholar 

  11. Ozgul-Yucel S, Turkay S (2003) Purification of FAME by rice hull ash adsorption. J Am Oil Chem Soc 80:373–376

    Article  CAS  Google Scholar 

  12. Manuale DL, Greco E, Clementz A, Torres GC, Vera CR, Yori JC (2014) Biodiesel purification in one single stage using silica as adsorbent. Chem Eng J 256:372–379

    Article  CAS  Google Scholar 

  13. Predojevic ZJ (2008) The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87:3522–3528

    Article  CAS  Google Scholar 

  14. Fadhil AB, Dheyab MM, Abdul-Qader AY (2012) Purification of biodiesel using activated carbons produced from spent tea waste. J Assoc Arab Univ Bas Appl Sci 11:45–49

    CAS  Google Scholar 

  15. Kandiyoti R, Lazaridis JL, Dyrvold B, Ravindra C (1984) Pyrolysis of a ZnCl2-impregnated coal in an inert atmosphere. Fuel 63:1583–1587

    Article  CAS  Google Scholar 

  16. Lillo-Raodenas MA, Cazorla-Amoros D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275

    Article  Google Scholar 

  17. Teng H, Yeh TS, Hsu LY (1998) Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36(9):1387–1395

    Article  CAS  Google Scholar 

  18. Guo J, Lua AC (2003) Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4 and KOH activation and their effects on adsorptive capacity. Chem Eng Res Design 81:585–590

    Article  CAS  Google Scholar 

  19. ASTM International. ASTM D3172: Standard Practice for Proximate Analysis of Coal and Coke. http://www.astm.org/Standards/D3172

  20. Tessmer CH, Vidic RD, Uranowski LJ (1997) Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ Sci Technol 31:1872–1879

    Article  CAS  Google Scholar 

  21. Chen X, Jeyaseelan S, Graham N (2002) Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Manag 22:755–760

    Article  CAS  Google Scholar 

  22. British Standards Institution. EN 14103: fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of ester and linolenic acid methyl ester contents. http://shop.bsigroup.com/ProductDetail/?pid=000000000030207061

  23. ASTM International. ASTM D 664: standard test method for acid number of petroleum products by potentiometric titratio. http://www.astm.org/Standards/D664

  24. Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G (2004) Biodiesel analytical methods. Subcontractor report

  25. Rutz D, Janssen R. Overview and recommendations on biofuel standards for transport in the EU. Project: BiofuelMarketplace (EIE/05/022/SI2.420009)

  26. ISO store. Purified glycerol for industrial use—determination of density at 20 degrees C (ISO2099-1972). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=6887

  27. ASTM International. ASTM D 445: standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). http://www.astm.org/Standards/D445

  28. ASTM International. ASTM D 93: Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. http://www.astm.org/Standards/D93

  29. Ros A, Lillo-Ródenas MA, Fuente E, Montes-Morán MA, Martín MJ, Linares-Solano A (2006) High surface area materials prepared from sewage sludge-based precursors. Chemosphere 65:132–340

    Article  CAS  Google Scholar 

  30. British Standards Institution. EN 14214: Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods. http://shop.bsigroup.com/ProductDetail/?pid=000000000030217517

  31. Yang T, Lua AC (2003) Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Micropor Mesopor Mater 63:113–124

    Article  CAS  Google Scholar 

  32. Hunsom M, Autthanit C (2013) Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH. Chem Eng J 229:334–343

    Article  CAS  Google Scholar 

  33. Laine J, Calafat A (1991) Factors affecting the preparation of activated carbons from coconut shell catalysed by potassium. Carbon 29:949–953

    Article  CAS  Google Scholar 

  34. Yu GX, Lu SX, Chen H, Zhu ZH (2005) Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon 43:2285–2293

    Article  CAS  Google Scholar 

  35. Puziy AM, Poddubnaya OI, Martı́nez-Alonso A, Suárez-Garcı́a F, Tascón JMD (2002) Synthetic carbon activated with phosphoric acid: II. Porous structure. Carbon 40(9):1507–1519

    Article  CAS  Google Scholar 

  36. Liu S, Musuku SR, Adhikari S, Fernando S (2009) Adsorption of glycerol from biodiesel washwaters. Environ Technol 30(5):505–510

    Article  CAS  Google Scholar 

  37. Otowa T, Nojima Y, Miyazaki T (1997) Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon 35:1315–1319

    Article  CAS  Google Scholar 

  38. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D, Linares-Solano A (2004) About reactions occurring during chemical activation with hydroxides. Carbon 42(7):1371–1375

    Article  Google Scholar 

  39. Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood, New York

    Google Scholar 

  40. Gupta S, Babu BV (2009) Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chem Eng J 150(2–3):352–365

    Article  CAS  Google Scholar 

  41. Vasconcelos HL, Camargo TP, Goncalve NS, Neves A, Laranjeira MCM, Favere WT (2008) Chitosan crosslinked with a metal complexing agent: synthesis, characterization and copper (II) ions adsorption. React Funct Polym 68:572–579

    Article  CAS  Google Scholar 

  42. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions. Indust Eng Chem Fund 5:212–218

    Article  CAS  Google Scholar 

  43. Bu J, Loh G, Gwie CG, Dewiyanti S, Tasrif M, Borgna A (2011) Desulfurization of diesel fuels by selective adsorption on ACs: competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons. Chem Eng J 166:207–217

    Article  CAS  Google Scholar 

  44. Vazquez I, Rodrıguez-Iglesias J, Maranon E, Castrillon L, Alvarez M (2007) Removal of residual phenols from coke wastewater by adsorption. J Hazard Mater 147:395–400

    Article  CAS  Google Scholar 

  45. Ho YS, Mckay G (1999) Comparative sorption kinetic studies of dyes and aromatic compounds onto fly ash. J Environ Sci Health A 34:1179–1204

    Article  Google Scholar 

  46. Ahmad AL, Sumathi S, Hameed BH (2005) Adsorption of residue oil from palm oil mill effluent using powder and chitosan flake: equilibrium and kinetic studies. Water Res 39:2483–2894

    Article  CAS  Google Scholar 

  47. Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    Article  CAS  Google Scholar 

  48. Zhang X, Bai R (2003) Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. J Colloid Interf Sci 264:30–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CU Graduate School Thesis Grant, the Ratchadapisek Sompoch Endowment Fund, Chulalongkorn University (Sci-Super II GF_58_08_23_01) and the Thailand Research Fund (IRG5780001) for financial support. Also, we thank Dr.Robert D.J. Butcher for comments, suggestions and checking the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mali Hunsom.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pangsupa, W., Hunsom, M. Preparation of Mangosteen Shell-Derived Activated Carbon Via KOH Activation for Adsorptive Refining of Crude Biodiesel. J Am Oil Chem Soc 93, 1697–1708 (2016). https://doi.org/10.1007/s11746-016-2898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2898-2

Keywords

Navigation