Skip to main content
Log in

PAM, OLA, and LNA are Differentially Taken Up and Trafficked Via Different Metabolic Pathways in Porcine Adipocytes

  • Original Article
  • Published:
Lipids

Abstract

Dietary fatty acids have different effects on fat deposition in pigs. To clarify the underlying mechanisms of this difference, we compared the metabolism of palmitic (PAM, saturated), oleic (OLA, monounsaturated) and linoleic acid (LNA, polyunsaturated) in porcine adipocytes treated with 100 μM PAM, OLA or LNA. We observed that the adipocytes incubated with LNA accumulated more lipids compared with those treated with PAM and OLA. We then probed the metabolism of these fatty acids in porcine adipocytes by using isotope-labelled fatty acids. The results showed that 42% of the [1-14C] LNA, 34% of the [1-14C] PAM and 28% of the [1-14C] OLA were recovered in the cellular lipids. The gene expression analyses showed that LNA significantly increased the expression of adipogenesis- and oxidation-related genes including PPARγ, C/EBPα, ap2 and NRF1. In addition, the cells incubated with LNA showed a decreased Ser112 phosphorylation in PPARγ compared to those incubated with PAM and OLA. Furthermore, when PPARγ Ser112 phosphorylation was inhibited, no significant difference in the triacylglycerol contents in the adipocytes was observed. These results showed the dietary fatty acids had different metabolism pathways in porcine adipocytes, and LNA significantly promoted lipid accumulation, probably by regulating PPARγ phosphorylation in adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACSL1:

Acyl-CoA synthetase long-chain family member 1

aP2:

Fatty acid binding protein 4

ASP:

Acid-soluble products

CD36:

CD36 molecule

CE:

Cholesteryl esters

C/EBPα:

CCAAT/enhancer-binding proteins α

COX:

Cytochrome C oxidase

CPT1:

Carnitine palmitoyltransferase 1

Cyt C:

Cytochrome C

DAG:

Diacylglycerol

FBS:

Fetal bovine serum

FA:

Fatty acid

IBMX:

3-isobuty-1-methylxanthine

LNA:

Linoleic acid

LCFA:

Long chain FA

MAG:

Monoacylglycerol (s)

MAPK:

MAP kinase

NRF1:

Nuclear respiratory factor 1

OLA:

Oleic acid

PL:

Phospholipids

PAM:

Palmitic acid

PPARγ:

Peroxisome proliferator-activated receptor γ

SFA:

Saturated fatty acids

SREBP1:

Sterol response element–binding protein 1

STA:

Stearic acid

TAG:

Triacylglycerol

TLC:

Thin-layer chromatography

Ucp-2:

Uncoupling protein 2

References

  1. Riserus U, Willett WC, Hu FB (2009) Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 48:44–51

    Article  CAS  PubMed  Google Scholar 

  2. Montell E, Turini M, Marotta M, Roberts M, Noe V, Ciudad CJ, Mace K, Gomez-Foix AM (2001) DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol Endocrinol Metab 280:E229–E237

    CAS  PubMed  Google Scholar 

  3. Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjorkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, Thoresen GH (2010) Metabolic switching of human myotubes is improved by n-3 fatty acids. J Lipid Res 51:2090–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Todorcevic M, Vegusdal A, Gjoen T, Sundvold H, Torstensen BE, Kjaer MA, Ruyter B (2008) Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids. Biochim Biophys Acta 1781:326–335

    Article  CAS  PubMed  Google Scholar 

  5. Ding ST, Wang JC, Mersmann HJ (2003) Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutr Res 23:1059–1069

    Article  CAS  Google Scholar 

  6. Hsu JM, Ding ST (2007) Effect of polyunsaturated fatty acids on the expression of transcription factor adipocyte determination and differentiation-dependent factor 1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes. Br J Nutr 90:507

    Article  Google Scholar 

  7. Ding S-T, McNeel RL, Mersmann HJ (2002) Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In Vitro Cell Dev Biol Anim 38:352

    Article  CAS  PubMed  Google Scholar 

  8. Li G, Yao W, Jiang H (2014) Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr 144:1887–1895

    Article  CAS  PubMed  Google Scholar 

  9. Raclot T (2003) Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res 42:257–288

    Article  CAS  PubMed  Google Scholar 

  10. Vegusdal A, Ostbye TK, Tran TN, Gjoen T, Ruyter B (2004) Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids 39:649–658

    Article  CAS  PubMed  Google Scholar 

  11. Tontonoz P, Hu ED, Spiegelman BM (1994) stimulation of adipogenesis in fibroblasts by PPAR-gamma-2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  12. Tontonoz P, Hu E, Spiegelman BM (1995) Regulation of adipocyte gene-expression and differentiation by peroxisome proliferator activated receptor-gamma. Curr Opin Genet Dev 5:571–576

    Article  CAS  PubMed  Google Scholar 

  13. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  CAS  PubMed  Google Scholar 

  14. Brown JD, Plutzky J (2007) Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115:518–533

    Article  CAS  PubMed  Google Scholar 

  15. Adams M, Reginato MJ, Shao DL, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  CAS  PubMed  Google Scholar 

  16. Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272:10811–10816

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Zhu L, Chen J, Wang Y (2015) mRNA m6A methylation downregulates adipogenesis in porcine adipocytes. Biochem Biophys Res Commun 459:201–207

    Article  CAS  PubMed  Google Scholar 

  18. Poulos SP, Dodson MV, Hausman GJ (2010) Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood) 235:1185–1193

    Article  CAS  Google Scholar 

  19. Wang XX, Huang M, Wang YZ (2012) The Effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena crocea R.). PloS One 7(10):e48069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Christiansen R, Borrebaek B, Bremer J (1976) The effect of (-)carnitine on the metabolism of palmitate in liver cells isolated from fasted and refed rats. FEBS Lett 62:313–317

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Zhou XH, Wang FQ, Yang HX, Chen JQ, Ren Y, Yuan ZQ, Wang XX, Wang YZ (2014) Selenium-enriched exopolysaccharides produced by Enterobacter cloacae Z0206 alleviate adipose inflammation in diabetic KKAy mice through the AMPK/SirT1 pathway. Mol Med Rep 9:683–688

    Article  CAS  PubMed  Google Scholar 

  23. Yi HB, Yu CH, Zhang HW, Song DG, Jiang DH, Du HH, Wang YZ (2015) Cathelicidin-BF suppresses intestinal inflammation by inhibiting the nuclear factor-kappa B signaling pathway and enhancing the phagocytosis of immune cells via STAT-1 in weanling piglets. Int Immunopharmacol 28:61–69

    Article  CAS  PubMed  Google Scholar 

  24. Li MX, Vascotto C, Xu SC, Dai N, Qing Y, Zhong ZY, Tell G, Wang D (2011) A New mitochondrial redox regulator: human AP endonuclease/redox factor APE1/Ref-1 modulates mitochondrial function after oxidative stress by regulating transcriptional activity of NRF1. Free Radical Bio Med 51:S15

    Article  Google Scholar 

  25. Toda C, Diano S (2014) Mitochondrial UCP2 in the central regulation of metabolism. Best Pract Res Cl En 28:757–764

    Article  CAS  Google Scholar 

  26. Li FN, Duan YH, Li YH, Tang YL, Geng MM, Oladele OA, Kim SW, Yin YL (2015) Effects of dietary n-6:n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 113:739–748

    Article  CAS  PubMed  Google Scholar 

  27. Bickerton AST, Roberts R, Fielding BA, Hodson L, Blaak EE, Wagenmakers AJM, Gilbert M, Karpe F, Frayn KN (2007) Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56:168–176

    Article  CAS  PubMed  Google Scholar 

  28. Frohnert BI, Hui TY, Bernlohr DA (1999) Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem 274:3970–3977

    Article  CAS  PubMed  Google Scholar 

  29. Rufer AC, Thoma R, Hennig M (2009) Structural insight into function and regulation of carnitine palmitoyltransferase. Cell Mol Life Sci 66:2489–2501

    Article  CAS  PubMed  Google Scholar 

  30. Papamandjaris AA, MacDougall DE, Jones PJH (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62:1203–1215

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Chu WS, Lu T, Hasstedt SJ, Kern PA, Elbein SC (2004) Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion. Am J Physiol Endocrinol Metab 286:E1–E7

    Article  CAS  PubMed  Google Scholar 

  32. Rangwala SM, Rhoades B, Shapiro JS, Rich AS, Kim JK, Shulman GI, Kaestner KH, Lazar MA (2003) Genetic modulation of PPAR gamma phosphorylation regulates insulin sensitivity. Dev Cell 5:657–663

    Article  CAS  PubMed  Google Scholar 

  33. Hu ED, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science 274:2100–2103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author’s contributions were as follows: YW, XW and CY contributed to the study design. CY, XW and JC wrote the manuscript and carried out data analyses. QJ and LX help to carry out data analysis. HY helped to modify the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xinxia Wang.

Ethics declarations

Funding

This work was supported by a Grant from National Basic Research Program of China (973 Program) (no. 2012CB124705) and the earmarked fund for Modern Agroindustry Technology Research System (CARS-36).

Conflict of interest

The authors declare there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Xi, L., Chen, J. et al. PAM, OLA, and LNA are Differentially Taken Up and Trafficked Via Different Metabolic Pathways in Porcine Adipocytes. Lipids 52, 929–938 (2017). https://doi.org/10.1007/s11745-017-4302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4302-x

Keywords

Navigation