Skip to main content
Log in

Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry

  • Review
  • Published:
Lipids

Abstract

Oxygenated lipid mediators released from non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) are known to have functional roles in humans. Notably, among these lipid mediators, isoprostanes molecules are robust biomarkers of oxidative stress but those from n-3 PUFA are also bioactive molecules. In order to identify and assess the isoprostanes, the use of mass spectrometry (MS) for analysis is preferable and has been used for over two decades. Gas chromatography (GC) is commonly coupled to the MS to separate the derivatized isoprostanes of interest in biological samples. In order to increase the accuracy of the analytical performance, GC–MS/MS was also applied. Lately, MS or MS/MS has been coupled with high-performance liquid chromatography to assess multiple isoprostane molecules in a single biological sample without derivatization process. However, there are limitations for the use of LC–MS/MS in the measurement of plasma isoprostanes, which will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

15-F2t-IsoP:

15-F2t-Isoprostane

4(RS)-4-F4t-NeuroP:

4(RS)-4-F4t-Neuroprostane

5-F2t-IsoP:

5-F2t-Isoprostane

ARA:

Arachidonic acid

AdA:

Adrenic acid

ALA:

Alpha-linolenic acid

AMPP:

N-(4-Aminomethylphenyl) pyridinium

APCI:

Atmospheric-pressure chemical ionization

BHT:

Butylated hydroxytoluene

DHA:

Docosahexaenoic acid

ELISA:

Enzyme-linked immunoassay

EPA:

Eicosapentaenoic acid

ESI:

Electrospray ionization

F1-PhytoP:

F1-Phytoprostane

F2-IsoP:

F2-Isoprostane

F2-dihomo-IsoP:

F2-dihomo-Isoprostane

F3-IsoP:

F3-Isoprostane

F4-NeuroP:

F4-Neuroprostane

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

GC–MS/MS:

Gas chromatography–tandem mass spectrometry

HPLC:

High performance liquid chromatography

IsoP:

Isoprostane

LC:

Liquid chromatography

LC–MS:

Liquid chromatography-mass spectrometry

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

MECP2:

Methyl-CpG-binding protein 2

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

m/z :

Mass over charge ratio

NeuroP:

Neuroprostane

NICI:

Negative-ion chemical ionization

PoAF:

Postoperative atrial fibrillation

PUFA:

Polyunsaturated fatty acid

Q1:

Precursor/parent ion

Q3:

Fragmented/daughter ion

RIA:

Radioimmunoassay

SIM:

Selected ion monitoring

S/N:

Signal-to-noise ratio

SPE:

Solid phase extraction

TOF:

Time-of-flight

References

  1. Morrow JD, Harris TM, Roberts LJ 2nd (1990) Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem 184:1–10

    Article  CAS  PubMed  Google Scholar 

  2. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd (2011) Isoprostane generation and function. Chem Rev 111:5973–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jahn U, Galano JM, Durand T (2008) Beyond prostaglandins–chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem 47:5894–5955

    Article  CAS  Google Scholar 

  4. Milne GL, Dai Q, Roberts LJ 2nd (2015) The isoprostanes-25 years later. Biochim Biophys Acta 1851:433–445

    Article  CAS  PubMed  Google Scholar 

  5. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  PubMed  Google Scholar 

  7. Sakamoto H, Corcoran TB, Laffey JG, Shorten GD (2002) Isoprostanes–markers of ischaemia reperfusion injury. Eur J Anaesthesiol 19:550–559

    CAS  PubMed  Google Scholar 

  8. Davies SS, Traustadottir T, Stock AA, Ye F, Shyr Y, Harman SM, Roberts LJ 2nd (2009) Ischemia/reperfusion unveils impaired capacity of older adults to restrain oxidative insult. Free Radic Biol Med 47:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies SS, Roberts LJ 2nd (2011) F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 50:559–566

    Article  CAS  PubMed  Google Scholar 

  10. Pratico D, MY Lee V, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12:1777–1783

    CAS  PubMed  Google Scholar 

  11. Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF (2001) Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med 125:510–512

    CAS  PubMed  Google Scholar 

  12. Montine TJ, Montine KS, McMahan W, Markesbery WR, Quinn JF, Morrow JD (2005) F2-isoprostanes in Alzheimer and other neurodegenerative diseases. Antioxid Redox Signal 7:269–275

    Article  CAS  PubMed  Google Scholar 

  13. Rossner P Jr, Gammon MD, Terry MB, Agrawal M, Zhang FF, Teitelbaum SL, Eng SM, Gaudet MM, Neugut AI, Santella RM (2006) Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol Biomark Prev 15:639–644

    Article  CAS  Google Scholar 

  14. Yan W, Byrd GD, Ogden MW (2007) Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC–MS/MS. J Lipid Res 48:1607–1617

    Article  CAS  PubMed  Google Scholar 

  15. Klawitter J, Haschke M, Shokati T, Klawitter J, Christians U (2011) Quantification of 15-F2t-isoprostane in human plasma and urine: results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared. Rapid Commun Mass Spectrom 25:463–468

    Article  CAS  PubMed  Google Scholar 

  16. McKinney ET, Shouri R, Hunt RS, Ahokas RA, Sibai BM (2000) Plasma, urinary, and salivary 8-epi-prostaglandin f2alpha levels in normotensive and preeclamptic pregnancies. Am J Obstet Gynecol 183:874–877

    Article  CAS  PubMed  Google Scholar 

  17. Xie J, Zhang Q, Zhong N, Lai K (2009) BAL fluid 8-isoprostane concentrations in eosinophilic bronchitis and asthma. J Asthma 46:712–715

    Article  CAS  PubMed  Google Scholar 

  18. Halliwell B, Lee CY (2010) Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 13:145–156

    Article  CAS  PubMed  Google Scholar 

  19. Pratico D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP, Iuliano L, Rokach J, FitzGerald GA (1998) IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci USA 95:3449–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Awad JA, Morrow JD, Takahashi K, Roberts LJ 2nd (1993) Identification of non-cyclooxygenase-derived prostanoid (F2-isoprostane) metabolites in human urine and plasma. J Biol Chem 268:4161–4169

    CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  23. Zhang B, Saku K (2007) Control of matrix effects in the analysis of urinary F2-isoprostanes using novel multidimensional solid-phase extraction and LC–MS/MS. J Lipid Res 48:733–744

    Article  CAS  PubMed  Google Scholar 

  24. Morrow JD, Minton TA, Mukundan CR, Campbell MD, Zackert WE, Daniel VC, Badr KF, Blair IA, Roberts LJ 2nd (1994) Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. J Biol Chem 269:4317–4326

    CAS  PubMed  Google Scholar 

  25. Walter MF, Blumberg JB, Dolnikowski GG, Handelman GJ (2000) Streamlined F2-isoprostane analysis in plasma and urine with high-performance liquid chromatography and gas chromatography/mass spectroscopy. Anal Biochem 280:73–79

    Article  CAS  PubMed  Google Scholar 

  26. Taber DF, Morrow JD, Roberts LJ 2nd (1997) A nomenclature system for the isoprostanes. Prostaglandins 53:63–67

    Article  CAS  PubMed  Google Scholar 

  27. Rokach J, Khanapure SP, Hwang SW, Adiyaman M, Lawson JA, FitzGerald GA (1997) Nomenclature of isoprostanes: a proposal. Prostaglandins 54:853–873

    Article  CAS  PubMed  Google Scholar 

  28. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ 2nd (1992) Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89:10721–10725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brose SA, Thuen BT, Golovko MY (2011) LC/MS/MS method for analysis of E(2) series prostaglandins and isoprostanes. J Lipid Res 52:850–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parchmann S, Mueller MJ (1998) Evidence for the formation of dinor isoprostanes E1 from alpha-linolenic acid in plants. J Biol Chem 273:32650–32655

    Article  CAS  PubMed  Google Scholar 

  31. Cetin I, Alvino G, Cardellicchio M (2009) Long chain fatty acids and dietary fats in fetal nutrition. J Physiol 587:3441–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barden AE, Croft KD, Durand T, Guy A, Mueller MJ, Mori TA (2009) Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men. J Nutr 139:1890–1895

    Article  CAS  PubMed  Google Scholar 

  33. Collado-González J, Durand T, Ferreres F, Medina S, Torrecillas A, Gil-Izquierdo Á (2015) Phytoprostanes. Lipid Technol 27:127–130

    Article  Google Scholar 

  34. Collado-Gonzalez J, Medina S, Durand T, Guy A, Galano JM, Torrecillas A, Ferreres F, Gil-Izquierdo A (2015) New UHPLC-QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chem 178:212–220

    Article  CAS  PubMed  Google Scholar 

  35. Karg K, Dirsch VM, Vollmar AM, Cracowski JL, Laporte F, Mueller MJ (2007) Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition. Free Radic Res 41:25–37

    Article  CAS  PubMed  Google Scholar 

  36. Minghetti L, Salvi R, Lavinia Salvatori M, Ajmone-Cat MA, De Nuccio C, Visentin S, Bultel-Ponce V, Oger C, Guy A, Galano JM, Greco A, Bernardo A, Durand T (2014) Nonenzymatic oxygenated metabolites of alpha-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-gamma activation. Free Radic Biol Med 73:41–50

    Article  CAS  PubMed  Google Scholar 

  37. Leung KS, Chen X, Zhong W, Yu AC, Lee CY (2014) Microbubble-mediated sonoporation amplified lipid peroxidation of Jurkat cells. Chem Phys Lipids 180:53–60

    Article  CAS  PubMed  Google Scholar 

  38. Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett 213:9–14

    Article  CAS  PubMed  Google Scholar 

  39. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197

    Article  CAS  PubMed  Google Scholar 

  40. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 368:225–229

    Article  CAS  PubMed  Google Scholar 

  41. Voutilainen S, Morrow JD, Roberts LJ 2nd, Alfthan G, Alho H, Nyyssonen K, Salonen JT (1999) Enhanced in vivo lipid peroxidation at elevated plasma total homocysteine levels. Arterioscler Thromb Vasc Biol 19:1263–1266

    Article  CAS  PubMed  Google Scholar 

  42. Morrow JD (2006) The isoprostanes—unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Curr Pharm Des 12:895–902

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ 2nd, Hoover RL, Badr KF (1992) Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 90:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kinsella BT, O’Mahony DJ, Fitzgerald GA (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 281:957–964

    CAS  PubMed  Google Scholar 

  45. VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ (2008) F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 49:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de La Torre A, Lee YY, Oger C, Sangild PT, Durand T, Lee JC, Galano JM (2014) Synthesis, discovery, and quantitation of dihomo-isofurans: biomarkers for in vivo adrenic acid peroxidation. Angew Chem 53:6249–6252

    Article  Google Scholar 

  47. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  48. Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J (2011) Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep 16:145–153

    Article  CAS  PubMed  Google Scholar 

  49. Filosa S, Pecorelli A, D’Espositoc M, Valacchi G, Hajek J (2015) Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radic Biol Med 88:81–90

    Article  CAS  PubMed  Google Scholar 

  50. De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Ponce V, Galano JM, Ciccoli L, Leoncini S, D’Esposito M, Filosa S, Pecorelli A, Valacchi G, Hayek J (2011) F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res 52:2287–2297

    Article  PubMed  PubMed Central  Google Scholar 

  51. Durand T, De Felice C, Signorini C, Oger C, Bultel-Ponce V, Guy A, Galano JM, Leoncini S, Ciccoli L, Pecorelli A, Valacchi G, Hayek J (2013) F(2)-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. Biochimie 95:86–90

    Article  CAS  PubMed  Google Scholar 

  52. Nourooz-Zadeh J, Halliwell B, Anggard EE (1997) Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochem Biophys Res Commun 236:467–472

    Article  CAS  PubMed  Google Scholar 

  53. Chen CT, Domenichiello AF, Trepanier MO, Liu Z, Masoodi M, Bazinet RP (2013) The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res 54:2410–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao L, Yin H, Milne GL, Porter NA, Morrow JD (2006) Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 281:14092–14099

    Article  CAS  PubMed  Google Scholar 

  55. Roy J, Oger C, Thireau J, Roussel J, Mercier-Touzet O, Faure D, Pinot E, Farah C, Taber DF, Cristol JP, Lee JC, Lacampagne A, Galano JM, Durand T, Le Guennec JY (2015) Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid. Free Radic Biol Med 86:269–278

    Article  CAS  PubMed  Google Scholar 

  56. Jamil J, Bankhele P, Salvi A, Mannix JE, Oger C, Guy A, Galano JM, Durand T, Njie-Mbye YF, Ohia SE, Opere CA (2014) Role of the non-enzymatic metabolite of eicosapentaenoic acid, 5-epi-5-F3t-isoprostane in the regulation of [(3)H]d-aspartate release in isolated bovine retina. Neurochem Res 39:2360–2369

    Article  CAS  PubMed  Google Scholar 

  57. Wu JH, Marchioli R, Silletta MG, Masson S, Sellke FW, Libby P, Milne GL, Brown NJ, Lombardi F, Damiano RJ Jr, Marsala J, Rinaldi M, Domenech A, Simon C, Tavazzi L, Mozaffarian D (2015) Oxidative stress biomarkers and incidence of postoperative atrial fibrillation in the omega-3 fatty acids for prevention of postoperative atrial fibrillation (OPERA) Trial. J Am Heart Assoc 4:e001886

    Article  PubMed  PubMed Central  Google Scholar 

  58. De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D’Esposito M, Filosa S, Oger C, Guy A, Bultel-Ponce V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J (2012) Partial rescue of Rett syndrome by omega-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr 7:447–458

    Article  PubMed  PubMed Central  Google Scholar 

  59. Roberts LJ 2nd, Montine TJ, Markesbery WR, Tapper AR, Hardy P, Chemtob S, Dettbarn WD, Morrow JD (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273:13605–13612

    Article  CAS  PubMed  Google Scholar 

  60. Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ 2nd, Morrow JD, Montine TJ (2004) Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128:117–124

    Article  CAS  PubMed  Google Scholar 

  61. Montine TJ, Quinn JF, Milatovic D, Silbert LC, Dang T, Sanchez S, Terry E, Roberts LJ 2nd, Kaye JA, Morrow JD (2002) Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol 52:175–179

    Article  CAS  PubMed  Google Scholar 

  62. Seet RC, Lee CY, Loke WM, Huang SH, Huang H, Looi WF, Chew ES, Quek AM, Lim EC, Halliwell B (2011) Biomarkers of oxidative damage in cigarette smokers: which biomarkers might reflect acute versus chronic oxidative stress? Free Radic Biol Med 50:1787–1793

    Article  CAS  PubMed  Google Scholar 

  63. Barden AE, Corcoran TB, Mas E, Durand T, Galano JM, Roberts LJ, Paech M, Muchatuta NA, Phillips M, Mori TA (2012) Is there a role for isofurans and neuroprostanes in pre-eclampsia and normal pregnancy? Antioxid Redox Signal 16:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oger C, Bultel-Ponce V, Guy A, Balas L, Rossi JC, Durand T, Galano JM (2010) The handy use of Brown’s P2-Ni catalyst for a skipped diyne deuteration: application to the synthesis of a [D4]-labeled F4t-neuroprostane. Chemistry 16:13976–13980

    Article  CAS  PubMed  Google Scholar 

  65. Taber DF, Reddy PG, Arneson KO (2008) A potential route to neuroprostanes and isoprostanes: preparation of the four enantiomerically pure diastereomers of 13-F4t-neuroP. J Org Chem 73:3467–3474

    Article  CAS  PubMed  Google Scholar 

  66. Guy A, Oger C, Heppekausen J, Signorini C, De Felice C, Furstner A, Durand T, Galano JM (2014) Oxygenated metabolites of n-3 polyunsaturated fatty acids as potential oxidative stress biomarkers: total synthesis of 8-F3t-IsoP, 10-F4t-NeuroP and [D4]-10-F4t-NeuroP. Chemistry 20:6374–6380

    Article  CAS  PubMed  Google Scholar 

  67. Quan LG, Cha JK (2002) Preparation of isoprostanes and neuroprostanes. J Am Chem Soc 124:12424–12425

    Article  CAS  PubMed  Google Scholar 

  68. Kim S, Lawson JA, Praticò D, FitzGerald GA, Rokach J (2002) The first total synthesis of iPF4α-VI and its deuterated analog. Tetrahedron Lett 43:2801–2805

    Article  CAS  Google Scholar 

  69. Yang K, Han X (2011) Accurate quantification of lipid species by electrospray ionization mass spectrometry—meet a key challenge in lipidomics. Metabolites 1:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haschke M, Zhang YL, Kahle C, Klawitter J, Korecka M, Shaw LM, Christians U (2007) HPLC-atmospheric pressure chemical ionization MS/MS for quantification of 15-F2t-isoprostane in human urine and plasma. Clin Chem 53:489–497

    Article  CAS  PubMed  Google Scholar 

  71. Milne GL, Gao B, Terry ES, Zackert WE, Sanchez SC (2013) Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radic Biol Med 59:36–44

    Article  CAS  PubMed  Google Scholar 

  72. Bollinger JG, Thompson W, Lai Y, Oslund RC, Hallstrand TS, Sadilek M, Turecek F, Gelb MH (2010) Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal Chem 82:6790–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bollinger JG, Naika GS, Sadilek M, Gelb MH (2013) LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J Lipid Res 54:3523–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu X, Moon SH, Mancuso DJ, Jenkins CM, Guan S, Sims HF, Gross RW (2013) Oxidized fatty acid analysis by charge-switch derivatization, selected reaction monitoring, and accurate mass quantitation. Anal Biochem 442:40–50

    Article  CAS  PubMed  Google Scholar 

  75. Kretschmer A, Giera M, Wijtmans M, de Vries L, Lingeman H, Irth H, Niessen WM (2011) Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI-MS(/MS) applied for the analysis of prostanoids and NSAID in urine. J Chromatogr B Analyt Technol Biomed Life Sci 879:1393–1401

    Article  CAS  PubMed  Google Scholar 

  76. Cai T, Ting H, Xin-Xiang Z, Jiang Z, Jin-Lan Z (2014) HPLC-MRM relative quantification analysis of fatty acids based on a novel derivatization strategy. Analyst 139:6154–6159

    Article  CAS  PubMed  Google Scholar 

  77. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

    Article  CAS  PubMed  Google Scholar 

  78. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14:1290–1294

    Article  CAS  PubMed  Google Scholar 

  79. Souverain S, Rudaz S, Veuthey JL (2004) Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J Chromatogr A 1058:61–66

    Article  CAS  PubMed  Google Scholar 

  80. Pascoe R, Foley JP, Gusev AI (2001) Reduction in matrix-related signal suppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquid chromatography. Anal Chem 73:6014–6023

    Article  CAS  PubMed  Google Scholar 

  81. Wang S, Li J, Shi X, Qiao L, Lu X, Xu G (2013) A novel stop-flow two-dimensional liquid chromatography-mass spectrometry method for lipid analysis. J Chromatogr A 1321:65–72

    Article  CAS  PubMed  Google Scholar 

  82. Mori TA, Croft KD, Puddey IB, Beilin LJ, Mori TA, Croft KD, Puddey IB, Beilin LJ (1999) An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal Biochem 268:117–125

    Article  CAS  PubMed  Google Scholar 

  83. Nourooz-Zadeh J, Gopaul NK, Barrow S, Mallet AI, Anggard EE (1995) Analysis of F2-isoprostanes as indicators of non-enzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: development of a solid-phase extraction procedure. J Chromatogr B Biomed Appl 667:199–208

    Article  CAS  PubMed  Google Scholar 

  84. Lee CY, Huang SH, Jenner AM, Halliwell B (2008) Measurement of F2-isoprostanes, hydroxyeicosatetraenoic products, and oxysterols from a single plasma sample. Free Radic Biol Med 44:1314–1322

    Article  CAS  PubMed  Google Scholar 

  85. Lee CY, Jenner AM, Halliwell B (2004) Rapid preparation of human urine and plasma samples for analysis of F2-isoprostanes by gas chromatography-mass spectrometry. Biochem Biophys Res Comm 320:696–702

    Article  CAS  PubMed  Google Scholar 

  86. Ohashi N, Yoshikawa M (2000) Rapid and sensitive quantification of 8-isoprostaglandin F2alpha in human plasma and urine by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 746:17–24

    Article  CAS  PubMed  Google Scholar 

  87. Taylor AW, Bruno RS, Frei B, Traber MG (2006) Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes. Anal Biochem 350:41–51

    Article  CAS  PubMed  Google Scholar 

  88. Sircar D, Subbaiah PV (2006) Isoprostane Measurement in Plasma and Urine by Liquid Chromatography-Mass Spectrometry with One-Step Sample Preparation. Clin Chem 53:251–258

    Article  Google Scholar 

  89. Unterwurzacher I, Koal T, Bonn GK, Weinberger KM, Ramsay SL (2008) Rapid sample preparation and simultaneous quantitation of prostaglandins and lipoxygenase derived fatty acid metabolites by liquid chromatography-mass spectrometry from small sample volumes. Clin Chem Lab Med 46:1589–1597

    Article  CAS  PubMed  Google Scholar 

  90. Bastani NE, Gundersen TE, Blomhoff R (2009) Determination of 8-epi PGF2 concentrations as a biomarker of oxidative stress using triple-stage liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 23 (18):2885–2890

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Small Project Funding (201409176019) and the Seed Funding Program for Basic Research (201310159020), the University of Hong Kong for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jetty Chung-Yung Lee.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.Y., Galano, JM., Oger, C. et al. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids 51, 1217–1229 (2016). https://doi.org/10.1007/s11745-016-4198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4198-x

Keywords

Navigation