Skip to main content
Log in

Tyrosol Attenuates High Fat Diet-Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β-Synthase and Cystathionine γ-Lyase

  • Original Article
  • Published:
Lipids

Abstract

The Mediterranean diet is known for its cardioprotective effects. Recently, its protective qualities have also been reported in patients with non-alcoholic fatty liver disease (NAFLD). Oxidative stress is one of the important factors responsible for the development and progression of NAFLD. Hydrogen sulfide (H2S), a multifaceted gasotransmitter, has emerged as a potential therapeutic target in NAFLD. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are major enzymes responsible for endogenous H2S synthesis. Since oxidative stress contributes to NAFLD pathogenesis, the objective of this study was to investigate the effect of tyrosol, a major compound in olive oil and white wine, on high fat diet-induced hepatic oxidative stress and the mechanisms involved. Mice (C57BL/6) were fed for 5 weeks with a control diet (10 % kcal fat), a high fat diet (60 % kcal fat, HFD) or a HFD supplemented with tyrosol. High fat diet feeding induced hepatic oxidative stress, as indicated by the significant increase in lipid peroxidation and NADPH oxidase activity. Tyrosol supplementation significantly increased hepatic CBS and CSE expression and H2S synthesis in high fat diet-fed mice. Such effects were associated with the attenuation of high fat diet-induced hepatic lipid peroxidation and the restoration of the redox equilibrium of the antioxidant glutathione. Tyrosol also inhibited palmitic acid-induced oxidative stress in hepatocytes (HepG2 cells). These results suggest that the antioxidant properties of tyrosol may be mediated through functional changes in CBS and CSE activity, which might contribute to the hepatoprotective effect of the Mediterranean diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AOAA:

Aminooxyacetic acid

CBS:

Cystathionine β-synthase

CSE:

Cystathionine γ-lyase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2S:

Hydrogen sulfide

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PAG:

dl-Propargylglycine

ROS:

Reactive oxygen species

References

  1. de Lorgeril M (2013) Mediterranean diet and cardiovascular disease: historical perspective and latest evidence. Curr Atheroscler Rep 15:370

    Article  PubMed  Google Scholar 

  2. Martinez-Gonzalez MA, Salas-Salvado J, Estruch R, Corella D, Fito M, Ros E, PREDIMED Investigators (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58:50–60

    Article  PubMed  Google Scholar 

  3. Babio N, Toledo E, Estruch R, Ros E, Martinez-Gonzalez MA, Castaner O, Bullo M, Corella D, Aros F, Gomez-Gracia E et al (2014) Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 186:E649–E657

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kontogianni MD, Tileli N, Margariti A, Georgoulis M, Deutsch M, Tiniakos D, Fragopoulou E, Zafiropoulou R, Manios Y, Papatheodoridis G (2014) Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr 33:678–683

    Article  CAS  PubMed  Google Scholar 

  5. Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S, O’Dea K, Desmond PV, Johnson NA, Wilson AM (2013) The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol 59:138–143

    Article  CAS  PubMed  Google Scholar 

  6. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams LA, Angulo P (2005) Recent concepts in non-alcoholic fatty liver disease. Diabet Med 22:1129–1133

    Article  CAS  PubMed  Google Scholar 

  8. Sartorio A, Del Col A, Agosti F, Mazzilli G, Bellentani S, Tiribelli C, Bedogni G (2007) Predictors of non-alcoholic fatty liver disease in obese children. Eur J Clin Nutr 61:877–883

    Article  CAS  PubMed  Google Scholar 

  9. Anstee QM, Targher G, Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344

    Article  CAS  PubMed  Google Scholar 

  10. Targher G (2007) Non-alcoholic fatty liver disease as a determinant of cardiovascular disease. Atherosclerosis 190:18–19; author reply 20–21

    Article  CAS  PubMed  Google Scholar 

  11. Targher G, Arcaro G (2007) Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 191:235–240

    Article  CAS  PubMed  Google Scholar 

  12. Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10:686–690

    Article  CAS  PubMed  Google Scholar 

  13. Kleiner DE, Berk PD, Hsu JY, Courcoulas AP, Flum D, Khandelwal S, Pender J, Pomp A, Roerig J, Machado LL et al (2014) Hepatic pathology among patients without known liver disease undergoing bariatric surgery: observations and a perspective from the longitudinal assessment of bariatric surgery (LABS) study. Semin Liver Dis 34:98–107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55:2005–2023

    Article  PubMed  Google Scholar 

  15. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845

    Article  CAS  PubMed  Google Scholar 

  16. Berson A, De Beco V, Letteron P, Robin MA, Moreau C, El Kahwaji J, Verthier N, Feldmann G, Fromenty B, Pessayre D (1998) Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology 114:764–774

    Article  CAS  PubMed  Google Scholar 

  17. Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69

    Article  CAS  PubMed  Google Scholar 

  18. Sarna LK, Wu N, Wang P, Hwang SY, Siow YL (2012) Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase. Can J Physiol Pharmacol 90:155–165

    Article  CAS  PubMed  Google Scholar 

  19. Hardwick RN, Fisher CD, Canet MJ, Lake AD, Cherrington NJ (2010) Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 38:2293–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarna LK, Siow YL (2015) The CBS/CSE system: a potential therapeutic target in NAFLD? Can J Physiol Pharmacol 93:1–11

    Article  CAS  PubMed  Google Scholar 

  21. Miro-Casas E, Covas MI, Fito M, Farre-Albadalejo M, Marrugat J, de la Torre R (2003) Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr 57:186–190

    Article  CAS  PubMed  Google Scholar 

  22. Larter CZ, Yeh MM (2008) Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23:1635–1648

    Article  PubMed  Google Scholar 

  23. Nakamura A, Terauchi Y (2013) Lessons from mouse models of high-fat diet-induced NAFLD. Int J Mol Sci 14:21240–21257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Torre-Robles A, Rivas A, Lorenzo-Tovar ML, Monteagudo C, Mariscal-Arcas M, Olea-Serrano F (2014) Estimation of the intake of phenol compounds from virgin olive oil of a population from southern Spain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:1460–1469

    Article  PubMed  Google Scholar 

  25. Franco MN, Galeano-Diaz T, Lopez O, Fernandez-Bolanos JG, Sanchez J, De Miguel C, Gil MV, Martin-Vertedor D (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem 163:289–298

    Article  CAS  PubMed  Google Scholar 

  26. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, Hote P, McClain CJ (2007) Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46:823–830

    Article  CAS  PubMed  Google Scholar 

  27. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194

    Article  CAS  PubMed  Google Scholar 

  28. Wu N, Sarna LK, Hwang SY, Zhu Q, Wang P, Siow YL, Karmin O (2013) Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding. Biochim Biophys Acta 1832:1560–1568

    Article  CAS  PubMed  Google Scholar 

  29. Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Malorni W, Masella R (1999) Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J Nutr 129:1269–1277

    CAS  PubMed  Google Scholar 

  30. Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid Redox Signal 19:465–481

    Article  CAS  PubMed  Google Scholar 

  31. Yang T, Zhang A, Honeggar M, Kohan DE, Mizel D, Sanders K, Hoidal JR, Briggs JP, Schnermann JB (2005) Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin. J Biol Chem 280:34966–34973

    Article  CAS  PubMed  Google Scholar 

  32. Srisook K, Kim C, Cha YN (2005) Cytotoxic and cytoprotective actions of O2- and NO (ONOO-) are determined both by cellular GSH level and HO activity in macrophages. Methods Enzymol 396:414–424

    Article  CAS  PubMed  Google Scholar 

  33. Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, Karmin O (2009) Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 297:F27–F35

    Article  CAS  PubMed  Google Scholar 

  35. Hwang SY, Sarna LK, Siow YL (2013) High-fat diet stimulates hepatic cystathionine beta-synthase and cystathionine gamma-lyase expression. Can J Physiol Pharmacol 91:913–919

    Article  CAS  PubMed  Google Scholar 

  36. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30:42–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu N, Siow YL , Karmin O (2010) Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine beta-synthase expression in the kidney. J Biol Chem 285:18225–18233

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang P, Isaak CK, Siow YL, Karmin O (2014) Downregulation of cystathionine beta-synthase and cystathionine gamma-lyase expression stimulates inflammation in kidney ischemia-reperfusion injury. Physiol Rep 2:e12251

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Covas MI, de la Torre R, Fito M (2015) Virgin olive oil: a key food for cardiovascular risk protection. Br J Nutr 113(Suppl 2):S19–S28

    Article  CAS  PubMed  Google Scholar 

  41. Gutierrez VR, de la Puerta R, Catala A (2001) The effect of tyrosol, hydroxytyrosol and oleuropein on the non-enzymatic lipid peroxidation of rat liver microsomes. Mol Cell Biochem 217:35–41

    Article  CAS  PubMed  Google Scholar 

  42. Di Benedetto R, Vari R, Scazzocchio B, Filesi C, Santangelo C, Giovannini C, Matarrese P, D’Archivio M, Masella R (2007) Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr Metab Cardiovasc Dis 17:535–545

    Article  PubMed  Google Scholar 

  43. Wang P, Zhu Q, Wu N, Siow YL, Aukema H, Karmin O (2013) Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase. J Agric Food Chem 61:3669–3675

    Article  CAS  PubMed  Google Scholar 

  44. Tomas-Barberan FA, Somoza V, Finley J (2012) Food bioactives research and the Journal of Agricultural and Food Chemistry. Symposium introduction. J Agric Food Chem 60:6641–6643

    Article  CAS  PubMed  Google Scholar 

  45. Mateos R, Goya L, Bravo L (2005) Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. J Agric Food Chem 53:9897–9905

    Article  CAS  PubMed  Google Scholar 

  46. Huang T, Hu X, Khan N, Yang J, Li D (2013) Effect of polyunsaturated fatty acids on homocysteine metabolism through regulating the gene expressions involved in methionine metabolism. Sci World J 2013:931626

    Google Scholar 

  47. Huang T, Wahlqvist ML, Li D (2012) Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutr J 11:6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Natural Sciences and Engineering Research Council of Canada, St. Boniface Hospital Foundation and Manitoba Health Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmin O.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarna, L.K., Sid, V., Wang, P. et al. Tyrosol Attenuates High Fat Diet-Induced Hepatic Oxidative Stress: Potential Involvement of Cystathionine β-Synthase and Cystathionine γ-Lyase. Lipids 51, 583–590 (2016). https://doi.org/10.1007/s11745-015-4084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4084-y

Keywords

Navigation