Skip to main content
Log in

Association of L-FABP T94A and MTP I128T Polymorphisms with Hyperlipidemia in Chinese Subjects

  • Original Article
  • Published:
Lipids

Abstract

The purpose of this study was to evaluate the relation between the L-FABP T94A and MTP I128T polymorphisms and hyperlipidemia in Chinese subjects. We recruited 390 volunteers: 201 hyperlipidemic and 189 healthy volunteers. The L-FABP T94A and MTP I128T polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Anthropometry, lipid profile, and liver function of the subjects were determined. We observed that male carriers of the L-FABP A94 allele had significantly higher body weight (P = 0.012), higher body mass index (BMI) (P = 0.014), and higher plasma triacylglycerol levels (TAG) (P = 0.033) and lower ratios of high-density lipoprotein cholesterol (HDL-C) to total cholesterol (TC) (P = 0.008) than T94 homozygotes. The MTP T128 allele was associated with significantly lower serum TC (P < 0.001) and low-density lipoprotein cholesterol (LDL-C) (P < 0.001) levels in males. There was a direct correlation between the MTP T128 allele and a decreased risk of hyperlipidemia after adjusting for body mass index (OR = 0.327, 95 % CI: 0.178–0.600, P < 0.001). In conclusion, both the MTP I128T and the L-FABP T94A polymorphisms can affect serum lipid levels in the Chinese population. The MTP T128 allele offers protection against hyperlipidemia in the Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apoB:

Apolipoprotein B

ALB:

Serum albumin

BMI:

Body mass index

FBG:

Fasting blood glucose

FFA:

Free fatty acid(s)

GLB:

Serum globulin

GPT:

Alanine aminotransferase

LCFA:

Long-chain fatty acids

LDL-C:

Low-density lipoprotein cholesterol

L-FABP:

Liver fatty acid binding protein

HDL-C:

High-density lipoprotein cholesterol

MTP:

Microsomal triglyceride transfer protein

PPARα:

Peroxisome proliferator-activated receptor α

STP:

Serum total protein

TC:

Total cholesterol

TAG:

Triacylglycerol

T-Bili:

Total bilirubin

References

  1. Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297:E271–E288

    Article  CAS  PubMed  Google Scholar 

  2. Annema W, Tietge UJ (2011) Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport. Curr Atheroscler Rep 13:257–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Brunham LR, Singaraja RR, Hayden MR (2006) Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 26:105–129

    Article  CAS  PubMed  Google Scholar 

  4. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F (2010) Liver fatty acid-binding protein and obesity. J Nutr Biochem 21:1015–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hussain MM, Rava P, Pan X, Dai K, Dougan SK, Iqbal J, Lazare F, Khatun I (2008) Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism. Curr Opin Lipidol 19:277–284

    Article  CAS  PubMed  Google Scholar 

  6. Gastaldi M, Dizière S, Defoort C, Portugal H, Lairon D, Darmon M, Planells R (2007) Sex-specific association of fatty acid binding protein 2 and microsomal triacylglycerol transfer protein variants with response to dietary lipid changes in the 3-mo Medi-RIVAGE primary intervention study. Am J Clin Nutr 86:1633–1641

    CAS  PubMed  Google Scholar 

  7. Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens WT, Glatz JF (2003) Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem 36:529–535

    Article  CAS  PubMed  Google Scholar 

  8. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40:1371–1383

    CAS  PubMed  Google Scholar 

  9. Wolfrum C, Borrmann CM, Borchers T, Spener F (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha—and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brouillette C, Bossé Y, Pérusse L, Gaudet D, Vohl MC (2004) Effect of liver fatty acid binding protein (FABP) T94A missense mutation on plasma lipoprotein responsiveness to treatment with fenofibrate. J Hum Genet 49:424–432

    Article  CAS  PubMed  Google Scholar 

  11. Fisher E, Weikert C, Klapper M, Lindner I, Möhlig M, Spranger J, Boeing H, Schrezenmeir J, Döring F (2007) L-FABP T94A is associated with fasting triglycerides and LDL-cholesterol in women. Mol Genet Metab 91:278–284

    Article  CAS  PubMed  Google Scholar 

  12. Robitaille J, Brouillette C, Lemieux S, Pérusse L, Gaudet D, Vohl MC (2004) Plasma concentrations of apolipoprotein B are modulated by a gene–diet interaction effect between the LFABP T94A polymorphism and dietary fat intake in French-Canadian men. Mol Genet Metab 82:296–303

    Article  CAS  PubMed  Google Scholar 

  13. Weickert MO, Loeffelholz CV, Roden M, Chandramouli V, Brehm A, Nowotny P, Osterhoff MA, Isken F, Spranger J, Landau BR, Pfeiffer AF, Möhlig M (2007) A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Am J Physiol Endocrinol Metab 293:E1078–E1084

    Article  CAS  PubMed  Google Scholar 

  14. Lin MC, Arbeeny C, Bergquist K, Kienzle B, Gordon DA, Wetterau JR (1994) Cloning and regulation of hamster microsomal triglyceride transfer protein. The regulation is independent from that of other hepatic and intestinal proteins which participate in the transport of fatty acids and triglycerides. J Biol Chem 269:29138–29145

    CAS  PubMed  Google Scholar 

  15. Sharp D, Blinderman L, Combs KA, Kienzle B, Ricci B, Wager-Smith K, Gil CM, Turck CW, Bouma ME, Rader DJ, Aggerbeck LP, Gregg RE, Gordon DA, Wetterau JR (1993) Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinemia. Nature 365:65–69

    Article  CAS  PubMed  Google Scholar 

  16. Ledmyr H, Karpe F, Lundahl B, McKinnon M, Skoglund-Andersson C, Ehrenborg E (2002) Variants of the microsomal triglyceride transfer protein gene are associated with plasma cholesterol levels and body mass index. J Lipid Res 43:51–58

    CAS  PubMed  Google Scholar 

  17. Rubin D, Helwig U, Pfeuffer M, Schreiber S, Boeing H, Fisher E, Pfeiffer A, Freitag-Wolf S, Foelsch UR, Doering F, Schrezenmeir J (2006) A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J Hum Genet 51:567–574

    Article  CAS  PubMed  Google Scholar 

  18. Thompson J, Winter N, Terwey D, Bratt J, Banaszak L (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem 272:7140–7150

    Article  CAS  PubMed  Google Scholar 

  19. Martin GG, Huang H, Atshaves BP, Binas B, Schroeder F (2003) Ablation of the liver fatty acid binding protein gene decreases fatty acyl CoA binding capacity and alters fatty acyl CoA pool distribution in mouse liver. Biochemistry 42:11520–11532

    Article  CAS  PubMed  Google Scholar 

  20. Newberry EP, Xie Y, Kennedy S, Han X, Buhman KK, Luo J, Gross RW, Davidson NO (2003) Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem 278:51664–51672

    Article  CAS  PubMed  Google Scholar 

  21. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2006) Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. Am J Physiol Gastrointest Liver Physiol 290:G36–G48

    Article  CAS  PubMed  Google Scholar 

  22. Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK, Landrock D, Kier AB, Schroeder F (2013) The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates. Biochemistry 52:9347–9357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB, Schroeder F (2014) Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J 281:2266–2283

    Article  CAS  PubMed  Google Scholar 

  24. McIntosh AL, Huang H, Storey SM, Landrock KK, Landrock D, Petrescu AD, Gupta S, Atshaves BP, Kier AB, Schroeder F (2014) Human FABP1 T94A variant impacts fatty acid metabolism and PPAR-α activation in cultured human female hepatocytes. Am J Physiol Gastrointest Liver Physiol 307:G164–G176

    Article  CAS  PubMed  Google Scholar 

  25. Lagakos WS, Gajda AM, Agellon L, Binas B, Choi V, Mandap B, Russnak T, Zhou YX, Storch J (2011) Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am J Physiol Gastrointest Liver Physiol 300:G803–G814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gajda AM, Zhou YX, Agellon LB, Fried SK, Kodukula S, Fortson W, Patel K, Storch J (2013) Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding. J Biol Chem 288:30330–30344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14:2040–2046

    Article  CAS  PubMed  Google Scholar 

  28. Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E, Bader M, Schroeder F, Binas B (2003) Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene. J Biol Chem 278:21429–21438

    Article  CAS  PubMed  Google Scholar 

  29. Atshaves BP, McIntosh AL, Storey SM, Landrock KK, Kier AB, Schroeder F (2010) High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice. Lipids 45:97–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, Kier AB, Schroeder F (2013) Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice. Lipids 48:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Agellon LB, Drozdowski L, Li L, Iordache C, Luong L, Clandinin MT, Uwiera RR, Toth MJ, Thomson AB (2007) Loss of intestinal fatty acid binding protein increases the susceptibility of male mice to high fat diet-induced fatty liver. Biochim Biophys Acta 1771:1283–1288

    Article  CAS  PubMed  Google Scholar 

  32. Ockner RK, Lysenko N, Manning JA, Monroe SE, Burnett DA (1980) Sex steroid modulation of fatty acid utilization and fatty acid binding protein concentration in rat liver. J Clin Invest 65:1013–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Huang H, Starodub O, McIntosh A, Atshaves BP, Woldegiorgis G, Kier AB, Schroeder F (2004) Liver fatty acid binding protein colocalizes with peroxisome proliferator receptor alpha and enhances ligand distribution to nuclei of living cells. Biochemistry 43:2484–2500

    Article  CAS  PubMed  Google Scholar 

  34. Lindén D, Lindberg K, Oscarsson J, Claesson C, Asp L, Li L, Gustafsson M, Borén J, Olofsson SO (2002) Influence of peroxisome proliferator-activated receptor alpha agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48. J Biol Chem 277:23044–23053

    Article  PubMed  Google Scholar 

  35. Newberry EP, Kennedy SM, Xie Y, Sternard BT, Luo J, Davidson NO (2008) Diet-induced obesity and hepatic steatosis in L-Fabp−/− mice is abrogated with SF, but not PUFA, feeding and attenuated after cholesterol supplementation. Am J Physiol Gastrointest Liver Physiol 294:G307–G314

    Article  CAS  PubMed  Google Scholar 

  36. Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS, Burczynski FJ (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42:871–879

    Article  CAS  PubMed  Google Scholar 

  37. Matsui K, Kamijo-Ikemorif A, Sugaya T, Yasuda T, Kimura K (2011) Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am J Pathol 178:1021–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kanaguchi Y, Suzuki Y, Osaki K, Sugaya T, Horikoshi S, Tomino Y (2011) Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis. Nephrol Dial Transplant 26:3465–3473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Karpe F, Lundahl B, Ehrenborg E, Eriksson P, Hamsten A (1998) A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Arterioscler Thromb Vasc Biol 18:756–761

    Article  CAS  PubMed  Google Scholar 

  40. Mann CJ, Anderson TA, Read J, Chester SA, Harrison GB, Köchl S, Ritchie PJ, Bradbury P, Hussain FS, Amey J, Vanloo B, Rosseneu M, Infante R, Hancock JM, Levitt DG, Banaszak LJ, Scott J, Shoulders CC (1999) The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipo-proteins. J Mol Biol 285:391–408

    Article  CAS  PubMed  Google Scholar 

  41. Ledmyr H, Ottosson L, Sunnerhagen M, Ehrenborg E (2006) The Ile128Thr polymorphism influences stability and ligand binding properties of the microsomal triglyceride transfer protein. J Lipid Res 47:1378–1385

    Article  CAS  PubMed  Google Scholar 

  42. Jun DW, Han JH, Jang EC, Kim SH, Kim SH, Jo YJ, Park YS, Chae JD (2009) Polymorphisms of microsomal triglyceride transfer protein gene and phosphatidylethanolamine N-methyltransferase gene in alcoholic and nonalcoholic fatty liver disease in Koreans. Eur J Gastroenterol Hepatol 21:667–672

    Article  CAS  PubMed  Google Scholar 

  43. Lundahl Björn, Leren TP, Ose L, Hamsten A, Karpe F (2000) A functional polymorphism in the promoter region of the microsomal triglyceride transfer protein (MTP -493G/T) influences lipoprotein phenotype in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 20:1784–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Sci-Tech Support Plan of China (SQ2010BAJY1411-08 to Dongsheng Ouyang); the National Development of Key Novel Drugs for Special Projects of China (2012ZX09303014001 to Dongsheng Ouyang); and the Hunan Scientific Plan (14JJ4006 to Dongsheng Ouyang). We thank all of the participants for their contributions to this study.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Ouyang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, H., Wang, S. et al. Association of L-FABP T94A and MTP I128T Polymorphisms with Hyperlipidemia in Chinese Subjects. Lipids 50, 275–282 (2015). https://doi.org/10.1007/s11745-015-3990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-3990-3

Keywords

Navigation