Skip to main content
Log in

n-3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Non-Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia: A Randomized Trial

  • Original Article
  • Published:
Lipids

Abstract

To date, treatment of hypertriglyceridemia with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been investigated solely in fasting and postprandial subjects. However, non-fasting triacylglycerols are more strongly associated with risk of cardiovascular disease. The objective of this study was to investigate the effect of long-chain n-3 PUFA on non-fasting triacylglycerol levels and to compare the effects of n-3 PUFA formulated as acylglycerol (AG-PUFA) or ethyl esters (EE-PUFA). The study was a double-blinded randomized placebo-controlled interventional trial, and included 120 subjects with non-fasting plasma triacylglycerol levels of 1.7–5.65 mmol/L (150–500 mg/dL). The participants received approximately 3 g/day of AG-PUFA, EE-PUFA, or placebo for a period of eight weeks. The levels of non-fasting plasma triacylglycerols decreased 28 % in the AG-PUFA group and 22 % in the EE-PUFA group (P < 0.001 vs. placebo), with no significant difference between the two groups. The triacylglycerol lowering effect was evident after four weeks, and was inversely correlated with the omega-3 index (EPA + DHA content in erythrocyte membranes). The omega-3 index increased 63.2 % in the AG-PUFA group and 58.5 % in the EE-PUFA group (P < 0.001). Overall, the heart rate in the AG-PUFA group decreased by three beats per minute (P = 0.045). High-density lipoprotein (HDL) cholesterol increased in the AG-PUFA group (P < 0.001). Neither total nor non-HDL cholesterol changed in any group. Lipoprotein-associated phospholipase A2 (LpPLA2) decreased in the EE-PUFA group (P = 0.001). No serious adverse events were observed. Supplementation with long-chain n-3 PUFA lowered non-fasting triacylglycerol levels, suggestive of a reduction in cardiovascular risk. Regardless of the different effects on heart rate, HDL, and LpPLA2 that were observed, compared to placebo, AG-PUFA, and EE-PUFA are equally effective in reducing non-fasting triacylglycerol levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AE:

Adverse events

AG:

Acylglycerol

ApoA1:

Apolipoprotein A1

ApoB:

Apolipoprotein B

BMI:

Body mass index

DHA:

Docosahexaenoic acid

EE:

Ethyl ester

EPA:

Eicosapentaenoic acid

FA:

Fatty acids

HDL-C:

High-density lipoprotein cholesterol

HgbA1c:

Glycated hemoglobin A1

ITT:

Intention-to-treat

LDL-C:

Low-density lipoprotein cholesterol

LDL-P:

LDL particle number

LpPLA2:

Lipoprotein-associated phospholipase A2

n-3 PUFA:

Omega-3 polyunsaturated fatty acids

PP:

Per protocol

PUFA:

Polyunsaturated fatty acids

QTc:

Corrected QT interval

VLDL-C:

Very-low-density lipoprotein cholesterol

References

  1. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, Peto R, Collins R (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370:1829–1839

    Article  PubMed  Google Scholar 

  2. World Health Organization (2009) Global health risks: mortality and burden of diseases attributable to selected major risks. WHO

  3. Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, Boekholdt SM, Khaw KT, Gudnason V (2007) Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 115:450–458

    Article  CAS  PubMed  Google Scholar 

  4. Criqui MH, Heiss G, Cohn R, Cowan LD, Suchindran CM, Bangdiwala S, Kritchevsky S, Jacobs DR Jr, O’Grady HK, Davis CE (1993) Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 328:1220–1225

    Article  CAS  PubMed  Google Scholar 

  5. Stensvold I, Tverdal A, Urdal P, Graff-Iversen S (1993) Non-fasting serum triglyceride concentration and mortality from coronary heart disease and any cause in middle aged Norwegian women. BMJ 307:1318–1322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308

    Article  CAS  PubMed  Google Scholar 

  7. Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG (2014) Low nonfasting triglycerides and reduced all-cause mortality: a Mendelian randomization study. Clin Chem 60:737–746

    Article  CAS  PubMed  Google Scholar 

  8. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  9. Opinion of Steering Committee of the Norwegian Scientific Committee for Food Safety (2011) Description of the processes in the value chain and risk assessment of decomposition substances and oxidation products in fish oils 19.10.2011, Norwegian Scientific Committee for Food Safety (VKM) p1-147

  10. Dyerberg J, Bang HO, Hjorne N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28:958–966

    CAS  PubMed  Google Scholar 

  11. Bang HO, Dyerberg J (1972) Plasma lipids and lipoproteins in Greenlandic west coast Eskimos. Acta Med Scand 192:85–94

    Article  CAS  PubMed  Google Scholar 

  12. Bang HO, Dyerberg J, Hjoorne N (1976) The composition of food consumed by Greenland Eskimos. Acta Med Scand 200:69–73

    Article  CAS  PubMed  Google Scholar 

  13. Harris WS (1989) Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 30:785–807

    CAS  PubMed  Google Scholar 

  14. Jacobsen TA (2008) Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr 87:1981–1990

    Google Scholar 

  15. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  16. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, Beilin LJ (2000) Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr 71:1085–1094

    CAS  PubMed  Google Scholar 

  17. Schmidt EB, Kristensen SD, De CR, Illingworth DR (1993) The effects of n-3 fatty acids on plasma lipids and lipoproteins and other cardiovascular risk factors in patients with hyperlipidemia. Atherosclerosis 103:107–121

    Article  CAS  PubMed  Google Scholar 

  18. Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ (2002) Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 20:1493–1499

    Article  CAS  PubMed  Google Scholar 

  19. Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB (2005) Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 112:1945–1952

    Article  CAS  PubMed  Google Scholar 

  20. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS (2012) Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308:1024–1033

    Article  CAS  PubMed  Google Scholar 

  21. Schuchardt JP, Hahn A (2013) Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 89:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Harris WS (2008) The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr 87:1997S–2002S

    CAS  PubMed  Google Scholar 

  23. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J (2006) Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 189:19–30

    Article  CAS  PubMed  Google Scholar 

  24. Harris WS, Connor WE, Alam N, Illingworth DR (1988) Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J Lipid Res 29:1451–1460

    CAS  PubMed  Google Scholar 

  25. Schmidt EB, Varming K, Svaneborg N, Dyerberg J (1992) n-3 polyunsaturated fatty acid supplementation (Pikasol) in men with moderate and severe hypertriglyceridaemia: a dose-response study. Ann Nutr Metab 36:283–287

    Article  CAS  PubMed  Google Scholar 

  26. Reis GJ, Silverman DI, Boucher TM, Sipperly ME, Horowitz GL, Sacks FM, Pasternak RC (1990) Effects of two types of fish oil supplements on serum lipids and plasma phospholipid fatty acids in coronary artery disease. Am J Cardiol 66:1171–1175

    Article  CAS  PubMed  Google Scholar 

  27. Schuchardt JP, Neubronner J, Kressel G, Merkel M, von Schacky C, Hahn A (2011) Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: results from a six month randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 85:381–386

    Article  CAS  PubMed  Google Scholar 

  28. Woodward M, Webster R, Murakami Y, Barzi F, Lam TH, Fang X, Suh I, Batty GD, Huxley R, Rodgers A (2012) The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur J Prev, Cardiol

    Google Scholar 

  29. Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM (2010) Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J 159:612–619

    Article  PubMed  Google Scholar 

  30. Geelen A, Brouwer IA, Schouten EG, Maan AC, Katan MB, Zock PL (2005) Effects of n-3 fatty acids from fish on premature ventricular complexes and heart rate in humans. Am J Clin Nutr 81:416–420

    CAS  PubMed  Google Scholar 

  31. Thompson A, Gao P, Orfei L, Watson S, Di AE, Kaptoge S, Ballantyne C, Cannon CP, Criqui M, Cushman M, Hofman A, Packard C, Thompson SG, Collins R, Danesh J (2010) Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 375:1536–1544

    Article  CAS  PubMed  Google Scholar 

  32. Gajos G, Zalewski J, Mostowik M, Konduracka E, Nessler J, Undas A (2014) Polyunsaturated omega-3 fatty acids reduce lipoprotein-associated phospholipase A2 in patients with stable angina. Nutr Metab Cardiovasc Dis 24:434–439

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen MW, Koenig W, Christensen JH, Schmidt EB (2009) The effect of marine n-3 fatty acids in different doses on plasma concentrations of Lp-PLA2 in healthy adults. Eur J Nutr 48:1–5

    Article  PubMed  Google Scholar 

  34. Nelson TL, Hokanson JE, Hickey MS (2011) Omega-3 fatty acids and lipoprotein associated phospholipase A(2) in healthy older adult males and females. Eur J Nutr 50:185–193

    Article  CAS  PubMed  Google Scholar 

  35. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364:937–952

    Article  PubMed  Google Scholar 

  36. Walldius G, Jungner I (2004) Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med 255:188–205

    Article  CAS  PubMed  Google Scholar 

  37. Mensink RP, Zock PL, Kester AD, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77:1146–1155

    CAS  PubMed  Google Scholar 

  38. Dangardt F, Osika W, Chen Y, Nilsson U, Gan LM, Gronowitz E, Strandvik B, Friberg P (2010) Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis 212:580–585

    Article  CAS  PubMed  Google Scholar 

  39. Dyerberg J, Bang HO (1979) Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet 2:433–435

    Article  CAS  PubMed  Google Scholar 

  40. Wachira JK, Larson MK, Harris WS (2014) n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. Br J Nutr 111:1652–1662

    Article  CAS  PubMed  Google Scholar 

  41. Dyerberg J, Madsen P, Moller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids 83:137–141

    Article  CAS  PubMed  Google Scholar 

  42. Neubronner J, Schuchardt JP, Kressel G, Merkel M, von Schacky C, Hahn A (2011) Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr 65:247–254

    Article  CAS  PubMed  Google Scholar 

  43. Laidlaw M, Cockerline CA, Rowe WJ (2014) A randomized clinical trial to determine the efficacy of manufacturers’ recommended doses of omega-3 fatty acids from different sources in facilitating cardiovascular disease risk reduction. Lipids Health Dis 13:99

    Article  PubMed Central  PubMed  Google Scholar 

  44. Krokan HE, Bjerve KS, Mork E (1993) The enteral bioavailability of eicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters as from glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase in vitro. Biochim Biophys Acta 1168:59–67

    Article  CAS  PubMed  Google Scholar 

  45. Yang LY, Kuksis A, Myher JJ (1990) Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J Lipid Res 31:137–147

    CAS  PubMed  Google Scholar 

  46. Offman E, Marenco T, Ferber S, Johnson J, Kling D, Curcio D, Davidson M (2013) Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: the ECLIPSE II study. Vasc Health Risk Manag 9:563–573

    Article  PubMed Central  PubMed  Google Scholar 

  47. Armand M (2007) Lipases and lipolysis in the human digestive tract: where do we stand? Curr Opin Clin Nutr Metab Care 10:156–164

    Article  CAS  PubMed  Google Scholar 

  48. Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty acids. Reprod Nutr Dev 31:475–500

    Article  CAS  PubMed  Google Scholar 

  49. Schuchardt JP, Neubronner J, Block RC, von Schacky C, Hahn A (2014) Associations between Omega-3 index increase and triacylglyceride decrease in subjects with hypertriglyceridemia in response to six month of EPA and DHA supplementation. Prostaglandins Leukot Essent Fatty Acids 91:129–134

    Article  CAS  PubMed  Google Scholar 

  50. Metcalf RG, James MJ, Gibson RA, Edwards JR, Stubberfield J, Stuklis R, Roberts-Thomson K, Young GD, Cleland LG (2007) Effects of fish-oil supplementation on myocardial fatty acids in humans. Am J Clin Nutr 85:1222–1228

    CAS  PubMed  Google Scholar 

  51. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38:2012–2022

    CAS  PubMed  Google Scholar 

  52. Meyer BJ, Hammervold T, Rustan AC, Howe PR (2007) Dose-dependent effects of docosahexaenoic acid supplementation on blood lipids in statin-treated hyperlipidaemic subjects. Lipids 42:109–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Marine Ingredients (Mt. Bethel, PA, USA) and the Department of Clinical Biochemistry, Copenhagen University Hospital Gentofte (Hellerup, Denmark). Some laboratory testing was donated by Health Diagnostic Laboratory, Inc. (Richmond, VA, USA). We are indebted to participants in the study for their collaboration. We thank Tove Brink-Kjær for her help in carrying out the study. The authors’ responsibilities were as follows: JD and SS for the concept, design, and implementation of the project; AH and PBS for data collection, interpretation of data, and statistical analysis; WSH and PBS for supervision of the laboratory analysis; and AH for the drafting of the manuscript. All authors read and approved the manuscript. SS has primary responsibility for the final content. Marine Ingredients, Mt. Bethel, PA, USA, provided reagents, materials, and study medication. Some laboratory testing was donated by the Department of Clinical Biochemistry, Copenhagen University Hospital Gentofte and Health Diagnostic Laboratory, Inc.

Conflict of interest

JD is scientific advisor for Marine Ingredients. WSH is an employee of Health Diagnostic Laboratory, Inc., and is President of OmegaQuant Analytics, LLC, two laboratories that offer RBC fatty acid testing. AH, PBS, and SS each declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Hedengran.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedengran, A., Szecsi, P.B., Dyerberg, J. et al. n-3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Non-Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia: A Randomized Trial. Lipids 50, 165–175 (2015). https://doi.org/10.1007/s11745-014-3968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3968-6

Keywords

Navigation