Skip to main content
Log in

Fatty Acid Methyl Ester Profiles of Bat Wing Surface Lipids

  • Original Article
  • Published:
Lipids

Abstract

Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape® and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape® adhesive patches removed ~6× more total lipid than Sebutape® indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C:

Cholesterol

CE:

Cholesteryl ester

C:M:

Chloroform/methanol

DAG:

Diacylglyceride(s)

FA:

Fatty acid(s)

FAME:

Fatty acid methyl ester(s)

FFA:

Unesterified fatty acid(s)

GC:

Gas chromatography

IT:

Ion trap

LC:

Liquid chromatography

LOQ:

Limit of quantification

MAG:

Monoacylglyceride(s)

MS:

Mass spectrometry

PL:

Phospholipid(s)

PUFA:

Polyunsaturated fatty acid(s)

SL:

Sphingolipid(s)

TAG:

Triacylglyceride(s)

WE:

Wax ester(s)

WNS:

White nose syndrome

References

  1. Blehert D, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  PubMed  CAS  Google Scholar 

  2. Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Article  Google Scholar 

  3. Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378

    Article  PubMed  CAS  Google Scholar 

  4. Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  5. Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) The economic importance of bats in agriculture. Science 332:41–42

    Article  PubMed  Google Scholar 

  6. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann NY Acad Sci 1223:1–38

    Article  PubMed  Google Scholar 

  7. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682

    Article  PubMed  CAS  Google Scholar 

  8. Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, Thomas NJ, Gargas A, Behr MJ (2009) Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest 21:411–414

    Article  PubMed  Google Scholar 

  9. Cryan PM, Meteyer CU, Boyles JG, Blehert D (2010) Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BioMed Central 8:135–143

    Google Scholar 

  10. Cryan PM, Meteyer CU, Blehert DS, Lorch JM, Reeder DM, Turner PP, Webb J, Behr M, Verant M, Russe RE, Castle KT (2013) Electrolyte depletion in white-nose syndrome bats. J Wildlife Dis 49:398–402

    Article  CAS  Google Scholar 

  11. Willis CKR, Menzies AK, Boyles JG, Wojciechowski MS (2011) Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr Comp Bio 51:364–373

    Article  Google Scholar 

  12. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR (2012) Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. PNAS 109:6999–7003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Kilpatrick A (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol Lett 15:1050–1057

    Article  PubMed  Google Scholar 

  14. Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TH (2011) Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One 6:e27430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, Vodzak ME, Darling SR, Stihler CW, Hicks AC, Jacob R, Grieneisen LE, Brownlee SA, Muller LK, Blehert DS (2012) Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One 7:1–10

    Google Scholar 

  16. Perry RW (2013) A review of factors affecting cave climates for hibernating bats in temperate North America. Env Review 21:28–39

    Article  Google Scholar 

  17. Pannkuk EL, Gilmore DF, Savary BJ, Risch TS (2012) Triacylglyceride (TAG) profiles of integumentary lipids isolated from three bat species determined by matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI–TOF MS). Can J Zool 90:1117–1127

    Article  CAS  Google Scholar 

  18. Pannkuk EL, Gilmore DF, Fuller N, Savary BJ, Risch TS (2013) Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free fatty acids, monoacylglycerides, squalene, and sterols. Chem Biodiver 10:2122–2132

    Article  CAS  Google Scholar 

  19. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  PubMed  CAS  Google Scholar 

  20. Bergsson G, Hilmarsson H, Thormar H (2011) Antibacterial, antiviral and antifungal activities of lipids. In: Thormar H (ed) Lipids and essential oils as antimicrobial agents. Wiley, West Sussex, pp 47–80

    Google Scholar 

  21. Fleck CB, Schöbel F, Brock M (2011) Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. Intern J Medical Microbiol 301:400–407

    Article  CAS  Google Scholar 

  22. Michael-Jubeli R, Bleton J, Baillet-Guffroy A (2011) High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling. J Lipid Res 52:143–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Muñoz-Garcia A, Ro J, Reichard JD, Kunz TH, Williams JB (2012) Cutaneous water loss and lipids of the stratum corneum in two syntopic species of bats. Comp Biochem Physiol A 161:208–215

    Article  Google Scholar 

  24. Pagnoni A, Kligman AM, Gammal EL, Popp C, Stoudemayer T (1994) An improved procedure for quantitative analysis of sebum production using Sebutape®. J Soc Cosmet Chem 45:221–225

    CAS  Google Scholar 

  25. Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M (2010) Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Research 51:3377–3388

    Article  CAS  Google Scholar 

  26. Nordstrom KM, Schmus HG, McGinley KJ, Leyden JJ (1986) Measurement of sebum output using a lipid absorbent tape. J Invest Dermatol 87:260–263

    Article  PubMed  CAS  Google Scholar 

  27. Law S, Wertz PW, Swartzendruber DC, Squier CA (1995) Regional variation in content, composition, and organization of porcine epithelial barrier lipids revealed by thin layer chromatography and transmission electron microscopy. Arch Oral Biol 40:1085–1091

    Article  PubMed  CAS  Google Scholar 

  28. Pannkuk EL, Risch TS, Savary BJ (2013) Profiling the triacylglyceride contents in bat integumentary lipids by preparative thin layer chromatography and MALDI-TOF mass spectrometry. J Vis Exp 79:e50757

    Google Scholar 

  29. Pochi PE, Strauss JS, Downing DT (1979) Age-related changes in sebaceous gland activity. J Investigate Dermat 73:108–111

    Article  CAS  Google Scholar 

  30. Pappas A, Fantasia J, Chen T (2013) Age and ethnic variations in sebaceous lipids. Dermato-Endocrin 5:319–324

    Article  Google Scholar 

  31. Jacobsen E, Billings JK, Frantz RA, Kinney CK, Stewart ME, Downing DT (1985) Age-related changes in sebaceous wax ester secretion rates in men and women. J Invest Dermat 85:483–485

    Article  CAS  Google Scholar 

  32. Yamamoto A, Serizawa S, Ito M, Sato Y (1987) Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. Soc Invest Dermatol 89:507–512

    Article  CAS  Google Scholar 

  33. Zelle L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Bio Fer Soil 29:111–129

    Article  Google Scholar 

  34. Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G (2005) Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonisation by Staphylococcus aureus. Dermat 211:240–248

    Article  CAS  Google Scholar 

  35. Cortese TA, Nicoll PA (1970) In vivo observations of skin appendages in the bat wing. J Invest Dermatol 54:1–11

    Article  PubMed  Google Scholar 

  36. Nassar JM, Salazar MV, Quintero A, Stoner KE, Gómez M, Cabrera A, Jaffe K (2008) Seasonal sebaceous patch in the nectar-feeding bats Leptonycteris curasoae and L. yerbabuenae (Phyllostomidae: Glossophaginae): Phenological, histological, and preliminary chemical characterization. Zoology 111:363–376

    Article  PubMed  Google Scholar 

  37. Pannkuk EL, McGuire LP, Gilmore DF, Savary BJ, Risch TS (2014) Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. J Chem Ecol 40:227–235

    Article  PubMed  CAS  Google Scholar 

  38. Pannkuk EL, Blair HB, Fischer AE, Gerdes CL, Gilmore DF, Savary BJ, Risch TS (2014) Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures. Fungal Biol 118:792–799

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Arkansas State Wildlife Grant, the National Speleological Society, the graduate program of environmental science at Arkansas State University (ASU), Bat Conservation International, and the Center for North American Bat Research and Conservation at Indiana State University. Laboratory assistance was provided by K. Arter and H. Southe (Arkansas State University). Samples were collected by C. Gerdes (Missouri State University), T. Divoll (Biodiversity Research Institute), and P. Jordan (Arkansas State University). We thank the ecotoxicology research facility (Arkansas State University; J. Bouldin and T. Woodruff) for assistance with GC/MS (NSF Grant #1040466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan L. Pannkuk.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannkuk, E.L., Fuller, N.W., Moore, P.R. et al. Fatty Acid Methyl Ester Profiles of Bat Wing Surface Lipids. Lipids 49, 1143–1150 (2014). https://doi.org/10.1007/s11745-014-3951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3951-2

Keywords

Navigation