Skip to main content
Log in

Inhibition of Endothelial Lipase Activity by Sphingomyelin in the Lipoproteins

  • Original Article
  • Published:
Lipids

Abstract

Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid

EL:

Endothelial lipase

FFA:

Free fatty acid(s)

GFP:

Green fluorescent protein

HDL:

High density lipoproteins

LC/MS:

Liquid chromatography/mass spectroscopy

LCAT:

Lecithin-cholesterol acyltransferase

LDL:

Low density lipoproteins

PtdCho:

Phosphatidylcholine

PUFA:

Polyunsaturated fatty acids

SMase:

Sphingomyelinase

TLC:

Thin layer chromatography

VLDL:

Very low density lipoproteins

References

  1. McCoy MG, Sun GS, Marchadier D, Maugeais C, Glick JM, Rader DJ (2002) Characterization of the lipolytic activity of endothelial lipase. J Lipid Res 43:921–929

    PubMed  CAS  Google Scholar 

  2. Ishida T, Choi S, Kundu RK, Hirata K, Rubin EM, Cooper AD, Quertermous T (2003) Endothelial lipase is a major determinant of HDL level. J Clin Invest 111:347–355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Zhang J, Yu Y, Nakamura K, Koike T, Waqar AB, Zhang X, Liu E, Nishijima K, Kitajima S, Shiomi M, Qi Z, Yu J, Graham MJ, Crooke RM, Ishida T, Hirata KI, Hurt-Camejo E, Chen YE, Fan J (2012) Endothelial lipase mediates HDL levels in normal and hyperlipidemic rabbits. J Atheroscler Thromb 19:213–226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH, Rader DJ (2010) Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res 107:357–364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Yasuda T, Ishida T, Rader DJ (2010) Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circ J 74:2263–2270

    Article  PubMed  CAS  Google Scholar 

  6. Bernoud N, Fenart L, Moliere P, Dehouck MP, Lagarde M, Cecchelli R, Lecerf J (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood–brain barrier over unesterified docosahexaenoic acid. J Neurochem 72:338–345

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, Silver DL (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506

    Article  PubMed  CAS  Google Scholar 

  8. Sovic A, Panzenboeck U, Wintersperger A, Kratzer I, Hammer A, Levak-Frank S, Frank S, Rader DJ, Malle E, Sattler W (2005) Regulated expression of endothelial lipase by porcine brain capillary endothelial cells constituting the blood–brain barrier. J Neurochem 94:109–119

    Article  PubMed  CAS  Google Scholar 

  9. Chen S, Subbaiah PV (2007) Phospholipid and fatty acid specificity of endothelial lipase: potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. Biochim Biophys Acta 1771:1319–1328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Tanaka H, Ishida T, Johnston TP, Yasuda T, Ueyama T, Kojima Y, Kundu RK, Quertermous T, Ishikawa Y, Hirata K (2009) Role of endothelial lipase in plasma HDL levels in a murine model of hypertriglyceridemia. J Atheroscler Thromb. 16:327–338

    Article  PubMed  CAS  Google Scholar 

  11. Tatematsu S, Francis SA, Natarajan P, Rader DJ, Saghatelian A, Brown JD, Michel T, Plutzky J (2013) Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. Arterioscler Thromb Vasc Biol 33:1788–1794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Qiu G, Hill JS (2009) Endothelial lipase promotes apolipoprotein aI-mediated cholesterol efflux in THP-1 macrophages. Arterioscler Thromb Vasc Biol 29:84–91

    Article  PubMed  Google Scholar 

  13. Kivela AM, Dijkstra MH, Heinonen SE, Gurzeler E, Jauhiainen S, Levonen AL, Yla-Herttuala S (2012) Regulation of endothelial lipase and systemic HDL cholesterol levels by SREBPs and VEGF-A. Atherosclerosis 225:335–340

    Article  PubMed  CAS  Google Scholar 

  14. Wu X, Huang H, Tang F, Le K, Xu S, Liu P (2010) Regulated expression of endothelial lipase in atherosclerosis. Mol Cell Endocrinol 315:233–238

    Article  PubMed  CAS  Google Scholar 

  15. Qiu G, Hill JS (2007) Atorvastatin decreases lipoprotein lipase and endothelial lipase expression in human THP-1 macrophages. J Lipid Res 48:2112–2122

    Article  PubMed  CAS  Google Scholar 

  16. Shimamura M, Matsuda M, Yasumo H, Okazaki M, Fujimoto K, Kono K, Shimizugawa T, Ando Y, Koishi R, Kohama T, Sakai N, Kotani K, Komuro R, Ishida T, Hirata K, Yamashita S, Furukawa H, Shimomura I (2007) Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler Thromb Vasc Biol 27:366–372

    Article  PubMed  CAS  Google Scholar 

  17. Subbaiah PV, Liu M (1993) Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin- cholesterol acyltransferase. J Biol Chem 268:20156–20163

    PubMed  CAS  Google Scholar 

  18. Gesquiere L, Cho W, Subbaiah PV (2002) Role of group IIa and group V secretory phospholipases A2 in the metabolism of lipoproteins. Substrate specificities of the enzymes and the regulation of their activities by sphingomyelin. Biochemistry 41:4911–4920

    Article  PubMed  CAS  Google Scholar 

  19. Singh DK, Subbaiah PV (2007) Modulation of the activity and arachidonic acid selectivity of group X secretory phospholipase A2 by sphingolipids. J Lipid Res 48:683–692

    Article  PubMed  CAS  Google Scholar 

  20. Olivera A, Romanowski A, Rani CSS, Spiegel S (1997) Differential effects of sphingomyelinase and cell- permeable ceramide analogs on proliferation of swiss 3t3 fibroblasts. Biochim Biophys Acta 1348:311–323

    Article  PubMed  CAS  Google Scholar 

  21. Arimoto I, Saito H, Kawashima Y, Miyajima K, Handa T (1998) Effects of sphingomyelin and cholesterol on lipoprotein lipase- mediated lipolysis in lipid emulsions. J Lipid Res 39:143–151

    PubMed  CAS  Google Scholar 

  22. Marinetti GV (1962) Chromatographic separation, identification, and analysis of phosphatides. J Lipid Res 3:1–20

    CAS  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  24. Gauster M, Rechberger G, Sovic A, Horl G, Steyrer E, Sattler W, Frank S (2005) Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res 46:1517–1525

    Article  PubMed  CAS  Google Scholar 

  25. Fujii S, Yoshida A, Sakurai S, Morita M, Tsukamoto K, Ikezawa H, Ikeda K (2004) Chromogenic assay for the activity of sphingomyelinase from Bacillus cereus and Its application to the enzymatic hydrolysis of lysophospholipids. Biol Pharm Bull 27:1725–1729

    Article  PubMed  CAS  Google Scholar 

  26. Duong M, Psaltis M, Rader DJ, Marchadier D, Barter PJ, Rye KA (2003) Evidence that hepatic lipase and endothelial lipase have different substrate specificities for high-density lipoprotein phospholipids. Biochemistry 42:13778–13785

    Article  PubMed  CAS  Google Scholar 

  27. Myher JJ, Kuksis A, Pind S (1989) Molecular species of glycerophospholipids and sphingomyelins of human plasma: comparison to red blood cells. Lipids 24:408–418

    Article  PubMed  CAS  Google Scholar 

  28. Subbaiah PV, Rodby RA (1994) Abnormal acyltransferase activities and accelerated cholesteryl ester transfer in patients with nephrotic syndrome. Metabolism 43:1126–1133

    Article  PubMed  CAS  Google Scholar 

  29. Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall AR (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 20:2614–2618

    Article  PubMed  CAS  Google Scholar 

  30. Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-Knockout mice. Circulation 110:3465–3471

    Article  PubMed  CAS  Google Scholar 

  31. Nelson JC, Jiang XC, Tabas I, Tall A, Shea S (2006) Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol 163:903–912

    Article  PubMed  Google Scholar 

  32. Yeboah J, McNamara C, Jiang XC, Tabas I, Herrington DM, Burke GL, Shea S (2010) Association of plasma sphingomyelin levels and incident coronary heart disease events in an adult population: multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 30:628–633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Bolin DJ, Jonas A (1996) Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J Biol Chem 271:19152–19158

    Article  PubMed  CAS  Google Scholar 

  34. Rye KA, Hime NJ, Barter PJ (1996) The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J Biol Chem 271:4243–4250

    Article  PubMed  CAS  Google Scholar 

  35. Sparks DL, Frank PG, Neville TAM (1998) Effect of the surface lipid composition of reconstituted LpA-I on apolipoprotein A-I structure and lecithin: cholesterol acyltransferase activity. Biochim Biophys Acta 1390:160–172

    Article  PubMed  CAS  Google Scholar 

  36. Koumanov K, Wolf C, Bereziat G (1997) Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J 326:227–233

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Broedl UC, Jin W, Rader DJ (2004) Endothelial lipase: a modulator of lipoprotein metabolism upregulated by inflammation. Trend Cardiovasc Med 14:202–206

    Article  CAS  Google Scholar 

  38. Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I (2000) Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 97:8681–8686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Williams J, Batten S, Harris M, Rockett B, Shaikh S, Stillwell W, Wassall S (2012) Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophys J 103:228–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thies F, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16:201–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by a grant from NIH HL-68585, and in part by a Merit Review award I01 BX001090 from the US Department of Veterans Affairs (to PVS). Research reported in this publication was supported by the Office of the Director, National Institutes of Health, under Award Number S10OD010660. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We wish to acknowledge the technical assistance of Ms. Amrith Rodriguez in the preparation of EL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papasani V. Subbaiah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 240 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Belikova, N.A., Billheimer, J. et al. Inhibition of Endothelial Lipase Activity by Sphingomyelin in the Lipoproteins. Lipids 49, 987–996 (2014). https://doi.org/10.1007/s11745-014-3944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3944-1

Keywords

Navigation