Skip to main content
Log in

Removal of Tannic Acid From Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The aim of this work is the extraction of tannic acid (TA) with two commercial nonionic surfactants, separately: Lutensol ON 30 and Triton X-114 (TX-114).The experimental cloud point extraction results are expressed by four responses to surfactant concentration and temperature variations: extent of TA extraction (E), remaining solute (X s,w) and surfactant (X t,w) concentrations in dilute phase and volume fraction of coacervate (Φc) at equilibrium. An empirical smoothing method was used and the results are represented on three dimensional plots. In optimal conditions, the extraction extent of TA reaches 95 and 87 % using TX-114 and Lutensol ON 30, respectively. Sodium sulfate, cetyltrimethylammonium bromide (CTAB) addition and pH effect are also studied. Finally, the possibility of recycling of the surfactant is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

E :

Extraction efficiency (%)

X s,w :

Residual concentration of tannic acid g/L

Φc:

Volume fraction of coacervate phase

X t,w :

Concentration of residual surfactant g/L

X t :

Initial concentration of surfactant (%)

T :

Temperature (°C)

Tc:

Cloud temperature (°C)

CMC:

Critical micelle concentration

CPE:

Cloud point extraction

HLB:

Hydrophile-lipophile balance

CTAB:

Cetyltrimethyl ammonium bromide

TA:

Tannic acid

References

  1. Field JA, Lettinga G (1992) Toxicity of tannic compounds to microorganisms. In: Hemingway WR, Laks PE (eds) Plant polyphenols, basic life sciences, vol 59. Springer, Wageningen, The Netherlands, pp 673–692

  2. De Nicola E, Meric S, Gallo M, Iaccarino M, Della Rocca CR, Lofrano G, Russo T, Pagano G (2007) Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth. Environ Pollut 146:46–54

    Article  Google Scholar 

  3. Singleton VL (1981) Naturally occurring food toxicants: phenolic substances of plant origin common in foods. In: Chichester CO, Mrak EM, Stewart GF (eds) Advances in food research, vol 27. Academic Press, New York, pp 149–242

    Google Scholar 

  4. Khanbabae K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  Google Scholar 

  5. Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91(1–2):21–40

    Article  CAS  Google Scholar 

  6. Chung SY, Reed S (2012) Removing peanut allergens by tannic acid. Food Chem 134:1468–1473

    Article  CAS  Google Scholar 

  7. Tannic acid (2015) https://fr.wikipedia.org/wiki/Acide_tannique;en.wikipedia.org/wiki/Tannic_acid. Accessed 30 Nov 2015

  8. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  CAS  Google Scholar 

  9. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health. Crit Rev Food Sci Nutr 38:421–464

    Article  CAS  Google Scholar 

  10. Higazy A, Hashem M, ElShafei A, Shaker N, Hadya MA (2010) Development of anti-microbial jute fabrics via in situ formation of cellulose–tannic acid–metal ion complex. Carbohydr Polym 79:890–897

    Article  CAS  Google Scholar 

  11. Gulcin R, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53

    Article  CAS  Google Scholar 

  12. Kim TJ, Silva JL, Kim MK, Jung YS (2010) Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem 118:740–746

    Article  Google Scholar 

  13. Huang JH, Liu YF, Wang XG (2008) Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J Hazard Mater 160:382–387

    Article  CAS  Google Scholar 

  14. Reddy NS, Pierson MD, Satthe SK, Salunkhe DK (1985) Dry bean tannins: a review of nutritional implications. J Am Oil Chem Soc 62:541–549

    Article  CAS  Google Scholar 

  15. Mitjavila S, Lacombe C, Carrera G, Derache R (1977) Tannic acid and oxidized tannic acid on the functional state of rat intestinal epithelium. J Nutr 107:2113–2121

    CAS  Google Scholar 

  16. Deshpande SS, Sathe SK, Salunkhe DK (1984) Chemistry and safety of plant polyphenols. In: Friedman M (ed) Nutritional and toxicological aspects of food safety. Plenum Press, New York, pp 457–495

    Chapter  Google Scholar 

  17. Wang J, Ji Y, Ding S, Ma H, Han XJ (2013) Adsorption and desorption Behavior of Tannic Acid in Aqueous Solution on Polyaniline Adsorbent. Chinese J Chem Eng 21(6):594–599

    Article  Google Scholar 

  18. Lu ZY, Jiang BC, Li AM, Wang X, Ma YF, Sheng XP (2010) Competitive adsorption of tannic acid and phenol onto a bi-functional polymeric adsorbent. Acta Chim Sinica. 68(5):437–442

    CAS  Google Scholar 

  19. Lin YL, Chiang PC, Chang EE (2007) Removal of small trihalomethane precursors from aqueous solution by nano filtration. J Hazard Mater 146(1–2):20–29

    Article  CAS  Google Scholar 

  20. Liu F, Luo XG, Lin XY (2010) Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan. J Hazard Mater 178:844–850

    Article  CAS  Google Scholar 

  21. Constabel CP, Barbehenn RV (2011) Tannins in plant–herbivore interactions. Phytochem 72(13):1551–1565

    Article  Google Scholar 

  22. Anirudhan TS, Ramachandran M (2006) Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay. J Colloid Interface Sci 299:116–124

    Article  CAS  Google Scholar 

  23. Gnanamani A, Sekaran G, Babu M (2001) Removal of tannin from cross-linked and open chain polymeric tannin substrates using heme peroxidases of Phanerochaete chrysosporium. Bioproc Biosys Eng 24:211–217

    Article  CAS  Google Scholar 

  24. Vinod VP, Anirudhan TS (2001) Sorption of tannic acid on zirconium pillared clay. J Chem Technol Biotechnol 77:92–101

    Article  Google Scholar 

  25. Hamdi N, Hamdaoui S, Srasra E (2014) Sorption of tannin from aqueous solutions on organo-modified smectite-illite. Int J Environ Res 8(2):367–376

    CAS  Google Scholar 

  26. Wang JH, Zheng SR, Liu JL, Xu ZY (2010) Tannic acid adsorption on amino-functionalized magnetic mesoporous silica. Chem Eng J 165:10–16

    Article  CAS  Google Scholar 

  27. LinJ ZhanY, ZhuZ XingY (2011) Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite. J Hazard Mater 193:102–111

    Article  Google Scholar 

  28. Lowry J, Sweeney CMC, Palmer B (1996) Changing perceptions of the effect of plant phenolics on nutrient supply in the ruminant. Aust J Agric Res 47(6):829–842

    Article  CAS  Google Scholar 

  29. Buso A, Balbo L, Giomo M, Farnia G, Sandona G (2000) Electrochemical removal of tannins from aqueous solutions. Ind Eng Chem Res 39(2):494–499

    Article  CAS  Google Scholar 

  30. Halkes SBA, Van den Berg AJ, Hoekstra MJ, du Pont JS, Kreis RW (2001) Treatment of burns: new perspectives for highly purified tannic acid? Burns. 27(3):299–300

    Article  CAS  Google Scholar 

  31. Kang WT, Kassim MJ (2011) A correlation study on the phenolic profiles and corrosion inhibition properties of mangrove tannins (Rhizophora apiculata) as affected by extraction solvents. Corr Sci 53:569–574

    Article  Google Scholar 

  32. Chanil JB, Narong PB, Jeill OC, Kyoung HC, Min JD, Yoon Y (2015) Removal of humic and tannic acids by adsorption–coagulation combined systems with activated biochar. J Hazard Mater 300:808–814

    Article  Google Scholar 

  33. Govindaraj M, Muthukumar M, Raju GB (2010) Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. Environ Technol 31:1613–1622

    Article  CAS  Google Scholar 

  34. Javier BF, Acero JL, Leal AI, González M (2009) The use of ultrafiltration and nano filtration membranes for the purification of cork processing wastewater. J Hazard Mater 162:1438–1445

    Article  Google Scholar 

  35. Li WW, Li XD, Zeng KM (2009) Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochem Eng J 43:142–148

    Article  CAS  Google Scholar 

  36. WatanabeH TanakaH (1978) A Non-ionic surfactant as a new solvent for liquid–liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta 25:585–589

    Article  Google Scholar 

  37. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solutions. Biol Chem 256:1604–1607

    CAS  Google Scholar 

  38. Hung KC, Chen BH, Liya EY (2007) Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants. Sep Purif Technol 57:1–10

    Article  CAS  Google Scholar 

  39. Paleologos EK, Giokas DL, Karayannis MI (2005) Micelle-mediated separation and cloud point extraction. Trends Anal Chem. 24(5):426–436

    Article  CAS  Google Scholar 

  40. Duarte LJN (2005) Extraction à deux phases aqueuses à l’aide d’alcools polyéthoxylés en vue de l’élimination de polluants organiques et d’ions métalliques. Thèse de Doctorat, INP-Toulouse, France

  41. Canselier JP, Gourdon C, Nogueira LJN, De Barros Neto EL, Haddou B, Gumila C (2007) Procédé d’extraction sans solvant des polluants organiques et métalliques. Patent N° FR2900145 (A1), WO-2007-122158 (PCT/EP2007/053777)

  42. Ferrera ZS, Sanz CP, Santana CM, Rodriguez JJS (2004) The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal Chem 23(7):479–489

    Google Scholar 

  43. Anastas PT, Warner JC (1998) Green Chemistry: Theory and Practice. Oxford University, New York, p 30

    Google Scholar 

  44. Cheng H, Sabatini DA (2007) Separation of organic compounds from surfactant solutions: a review: separation science and technology. Sep Sci Technol 42:453–475

    Article  CAS  Google Scholar 

  45. Kungsanant S, Kitiyanan B, Rirksomboon T, Osuwan S, Scamehorn J (2008) Toluene removal from nonionic surfactant coacervate phase solutions by vacuum stripping. Sep Purif Technol 63:370–378

    Article  CAS  Google Scholar 

  46. Kungsanant S, Kitiyanan B, Rirksomboon T, Osuwan S, Scamehorn J (2009) Recovery of nonionic surfactant from VOC-contaminated coacervate phase solutions by co-current vacuum stripping: effect of surfactant concentration, temperature, and solute type. Sep Purif Technol 66:510–516

    Article  CAS  Google Scholar 

  47. Harrison RG (2003) Bioseparations science and engineering. Oxford University, New York

    Google Scholar 

  48. Ingram T, Mehling T, Smirnova I (2013) Partition Coefficients of Ionizable Solutes in Aqueous Micellar Two-Phase Systems. Chem Eng J 218:204–213

    Article  CAS  Google Scholar 

  49. Haddou B, Guitri N, Debbab A, Gourdon C, Derriche Z (2011) Cloud point extraction of Orange II and Orange G using neutral and mixed micelles: comparative approach using experimental design. Sep Sci Technol 46(5):734–743

    Article  CAS  Google Scholar 

  50. Ghouas H, Haddou B, Kameche M, Derriche Z, Gourdon C (2012) Extraction of humic acid by coacervate: investigation of direct and back processes. J Hazard Mater 205–206:171–178

    Article  Google Scholar 

  51. Mathew DS, Juang RS (2007) Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Sep Purif Technol 53:199–215

    Article  CAS  Google Scholar 

  52. Wang Z, Xu JH, Liang R, Qi H (2008) A downstream process with microemulsion extraction for microbial transformation in cloud point system. Biochem Eng J 41:24–29

    Article  Google Scholar 

  53. Shen LJ, Zhang XH, Liu MZ, Wang ZL (2014) Microemulsion extraction of monascus pigments from nonionic surfactant using high polarity of diethyl ether as excess oil phase. Sep Sci Technol 49:2346–2351

    Article  CAS  Google Scholar 

  54. Watarai H (1997) Microemulsions in separation sciences. J Chromatogr 780:93–102

    Article  CAS  Google Scholar 

  55. Ben Ghoulam M, Moatadid N, Graciaa A, Lachaise J (2004) Quantitative effect of nonionic surfactant partitioning on the hydrophile-lipophile balance temperature. Langmuir 20:2584–2589

    Article  CAS  Google Scholar 

  56. Thiele B, Günther K, Schwuger MJ (1997) Alkylphenol ethoxylates: trace analysis and environmental behavior. Chem Rev 97:3247–3272

    Article  CAS  Google Scholar 

  57. Jonkers N, Laane RWPM, Voogt P De (2005) Sources and fate of nonylphenol ethoxylates and their metabolites in the Dutch coastal zone of the North Sea. Mar Chem 96:115–135

    Article  CAS  Google Scholar 

  58. Falbe J (1986) Surfactants in consumer products: theory, technology and applications. Springer, Berlin

    Google Scholar 

  59. De Barros Neto EL, Canselier JP, Gourdon C, (2001) Organic solvent-free extraction of phenol through liquid-coacervate systems. Solvent Extraction for the 21st Century, SCI, London, 1171–176

  60. Hinze WL(1992) Cloud point extraction and preconcentration procedures for organic and related pollutants of states concern. Water ResourResInstUnivNC. 92–269

  61. Materna K, Szymanowski J (2002) Separation of phenols from aqueous micellar solutions by cloud point extraction. J Colloid Interface Sci 255:195–201

    Article  CAS  Google Scholar 

  62. Haddou B, Canselier JP, Gourdon C (2003) Purification of effluents by two-aqueous phase extraction. Trans IChemE (Chem Eng Res Des) 81(A):1185–1192

    Article  CAS  Google Scholar 

  63. Haddou B, Taibi A, Bouberka Z, Bouabdesselam H, Derriche Z (2007) Separation of neutral red and methylene blue from wastewater using two-aqueous phase extraction. Sep Sci Technol 42(12):2677–2691

    Article  CAS  Google Scholar 

  64. SaitoH ShinodaK (1967) The solubilization of hydrocarbons in aqueous solution of nonionic surfactants. J Colloid Interface Sci 24:10–15

    Article  Google Scholar 

  65. Schott H, Hans SK (1975) Effect of inorganic additive on solutions of nonionic surfactants II. J Pharm Sci 64(4):658–664

    Article  CAS  Google Scholar 

  66. Schott H (1998) Comparing the surface chemical properties and the effect of salts on the cloud point of a conventional non-ionic surfactant, Octoxynol 9 (Triton X-100), and of its oligomer, Tyloxapol (Triton WR-1339). J Colloid interface Sci 205:496–502

    Article  CAS  Google Scholar 

  67. Schubert KV, Strey R, Kahlweit M (1991) A new purification technique for alkyl polyglycol ethers and miscibility gaps for water CiEj. J Colloid Interface Sci 141:21–29

    Article  CAS  Google Scholar 

  68. Akita S, Takeuchi H (1995) Cloud point extraction of organic compound from aqueous solution with non-ionic surfactants. Sep Sci Technol 30:833–837

    Article  CAS  Google Scholar 

  69. Valaulikar BS, Manohar C (1985) The mechanism of clouding in triton X-100: The effect of additives. J Colloid Interface Sci 108(2):403–406

    Article  CAS  Google Scholar 

  70. Sharma KD, Sudha G, Suri SK, Randhawa HS (1989) Studies on mixed surfactant systems: effect of some anionic surfactant on the cloud point of poly(nona)oxyethylated nonylphenol. J Am Oil Chem Soc 66(7):1015–1017

    Article  CAS  Google Scholar 

  71. Haddou B, Canselier JP, Gourdon C (2006) Cloud point extraction of phenol and benzyl alcohol from aqueous stream. Sep Purif Technol 50(1):114–121

    Article  CAS  Google Scholar 

  72. Box G, Draper N (1987) Empirical Model Building and Response Surfaces. Wiley, New York

    Google Scholar 

  73. Talbi Z, Haddou B, Bouberka Z, Derriche Z (2009) Simultaneous elimination of pollutants dissolved and dispersed from cutting oil wastes using two-phase aqueous extraction methods. J Hazard Mater 163(2/3):748–755

    Article  CAS  Google Scholar 

  74. Ghouas H, Haddou B, Bouabdesselam H, Bouberka Z, Derriche Z (2010) Elimination of fuel spills from effluent using cloud point extraction methods. J Hazard Mater 180:188–196

    Article  CAS  Google Scholar 

  75. Gullickson ND, Scamehorn JF, Harwell JH (1989) Liquid-coacervate extraction. In: Scamehorn JF, Harwell JH (eds) Surfactant-based separation processes. Marcel Dekker, New York, pp 139–153

    Google Scholar 

  76. Buffle J (1988) Complexation reactions in aquatic systems: an analytical approach. Ellis Horwood, Chichester

    Google Scholar 

  77. Fendler JH (1982) Membrane mimetic chemistry. Wiley Interscience, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Haddou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouas, H., Haddou, B., Kameche, M. et al. Removal of Tannic Acid From Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction. J Surfact Deterg 19, 57–66 (2016). https://doi.org/10.1007/s11743-015-1764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1764-9

Keywords

Navigation