Skip to main content
Log in

Production of Palm-Based Esteramine Through Heterogeneous Catalysis

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

This study involved maximizing the conversion of palm-based methyl palmitate to esteramine, an intermediate for esterquats via transesterification with triethanolamine, aided by Ca–Al as a heterogeneous catalyst in a 500-ml reaction unit. The effect of process parameters on the conversion was investigated. The optimum process parameters, consisting of a mole ratio of 1.8:1 (methyl palmitate:triethanolamine), 170 °C, 10 mbar, 0.5 % catalyst and a duration of 2 h, produced more than 90 % conversion. Transesterification employing Ca–Al is more environmentally friendly than the conventional approach using sodium methoxide, simplifies the downstream separation process and the reusability of the catalyst was successfully tested in three subsequent cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tyagi R, Tyagi VK, Khanna RK (2006) Synthesis, characterization and performance of tallow fatty acids and triethanolamine based esterquats. J Oleo Sci 55:337–345

    Article  CAS  Google Scholar 

  2. Puchta R, Krings P, Sandkuehler P (1993) A new generation of softeners. Tenside. Surfact. Deterg. 30:186–191

    CAS  Google Scholar 

  3. Friedli F, Keys R, Toney CJ, Portwood O, Whittlinger D, Doerr M (2001) Novel new ester quaternaries for improved performance benefits as rinse cycle fabric softeners. J. Surfact. Deterg. 4:401–405

    Article  CAS  Google Scholar 

  4. Chen T, Han H, Yao J, Wang G (2007) The transesterification of dimethyl carbonate and phenol catalyzed by 12-molybdophosphoric salts. Catal Commun 8:1361–1365

    Article  CAS  Google Scholar 

  5. Climent MJ, Corma A, Sharifah B, Hamid A, Iborra S, Mifsud M (2006) Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl ester with solid based catalyst. Green Chem 8:524–532

    Article  CAS  Google Scholar 

  6. Idris Z, Ahmad S, Nakasato S (1995) Preparation of palm-based esteramine using chemical catalyst. Elaies 7(2):135–145

    Google Scholar 

  7. Abdul Aziz H, Abu Zainab I, Hassan H (2014) Transesterification of palm stearin methyl ester and triethanolamine: an alternative technology for esterquats production. Int J Appl Sci Technol. 4:7

    Google Scholar 

  8. Jiang YJ, Juan JC, Zhang JC (2007) Preparation and catalytic application of novel water tolerant solid acid catalysts of zirconium sulfate/HZSM-5. Chem. Res. Chin. U 23:349–354

    Article  CAS  Google Scholar 

  9. Geng T, Li Q, Jiang Y, Wang W (2011) Esterification of stearic acid with triethanolamine over zirconium sulfate supported on SBA-15 mesoporous molecular sieve. J. Surfact Deterg 14:15–22

    Article  CAS  Google Scholar 

  10. Jiang Y, Geng T, Li Q (2012) Synthesis of stearic acid triethanolamine ester over Al-SBA-15. J Porous Mater 19:369–374

    Article  CAS  Google Scholar 

  11. Narula OP (1995) Treatise on fats, fatty acids & oleochemicals. Industrial Consultants, New Delhi

    Google Scholar 

  12. Wang Y-B, Jehng J-M (2011) Hydrotalcite-like compounds containing transition metals as solid base catalysts for transesterification. Chem Eng J 175:548–554

    Article  CAS  Google Scholar 

  13. Gao L, Teng G, Xiao G, Wei R (2010) Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass Bioenergy 34:1283–1288

    Article  CAS  Google Scholar 

  14. Alvarez MG, Segarra AM, Contreras S, Sueiras JE, Medina F, Figueras F (2010) Enhanced use of renewable resources: transesterification of glycerol catalyzed by hydrotalcite-like compounds. Chem Eng J 161:340–345

    Article  CAS  Google Scholar 

  15. Corma A, Hamid SBA, Iborra S, Velty A (2005) Lewis and Brønsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J Catal 234:340

    Article  CAS  Google Scholar 

  16. Reichle WT (1985) Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J. Catalysis. 94:547–557

    Article  CAS  Google Scholar 

  17. Cavani F, Trifirb F, Vaccari A (1991) Hydrotalcite-type anionic clays preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  18. Mishra S, Tyagi VK (2007) High di (alkyl fatty ester) amines and quaternary ammonium compounds derived therefrom. J Oleo Sci 56:269–276

    Article  CAS  Google Scholar 

  19. Franklin R, Mendello R, Albert P, Steichen D, Trinh P-N (2002)High di(alkyl fatty ester) amines and quaternary ammonium compounds derived therefrom. Patent No. US 20020025915A1

  20. Bonhorst CW, Althouse PM, Triebold HO (1948) Esters of naturally occurring fatty acids. Ind Eng Chem 40:2379–2384

    Article  CAS  Google Scholar 

  21. Yunus R, Fakhru’l-Razi A, Ooi TL, Iyuke SE, Idris A (2003) Development of optimum synthesis method for transesterification of palm oil methyl esters and trimethylolpropane to environmentally acceptable palm oil-based lubricant. J Oil Palm Res 15(2):35–41

    CAS  Google Scholar 

  22. Trius A, Bigorra J, Pomares J (1991) Process for preparing quaternary ammonium compounds for the use as fabric softners. PCT Int Appl WO 9101, 295(to Henkel K.G.a.A)

  23. Masoumi HRF, Kassim A, Basri M, Abdullah DK (2011) Determining optimum conditions for lipase-catalyzed synthesis of triethanolamine (TEA)-based esterquat cationic surfactant by a Taguchi robust design method. Molecules 16:4672–4680

    Article  CAS  Google Scholar 

  24. Masoumi HRF, Kassim A, Basri M, Abdullah DK, Haron MJ (2011) Multivariate optimization in the biosynthesis of a triethanolamine (TEA)-based esterquat cationic surfactant using an artificial neural network. Molecules 16:5538–5549

    Article  CAS  Google Scholar 

  25. Masoumi HRF, Kassim A, Basri M, Abdullah DK, Abdollahi Salwa S, RezaeeM Gani A (2013) Statistical optimization of process parameters for lipase-catalyzed synthesis of triethanolamine-based esterquats using response surface methodology in 2-liter bioreactor. Scientific World Journal. 2013:1–9

    Article  Google Scholar 

  26. Masoumi HRF, Kassim A, Basri M, Abdullah DK, Abdollahi Y, Salwa S, Gani A, Rezaee M (2014) Optimization of process parameters for lipase-catalyzed synthesis of esteramines-based esterquats using wavelet neural network (WNN) in 2-liter bioreactor. J Ind Eng Chem 20:1973–1976

    Article  Google Scholar 

  27. Masoumi HRF, Kassim A, Basri M, Abdullah DK, Abdollahi Y, Salwa S, Gani A, Rezaee M (2014) Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant. J Surfact Deterg. 17:287–294

    Article  Google Scholar 

  28. Akhihiero ET, Aluyor EO, Audu TOK (2010) The effect of catalyst phase on biodiesel production (a review). J Eng Appl Sci 2:93–102

    Google Scholar 

Download references

Acknowledgments

This work was carried out at the Center for Separation Science and Technology (CSST) of University of Malaya in collaboration with the Advanced Oleochemical Technology Division of the Malaysian Palm Oil Board (MPOB). This study was financially supported by the MPOB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haliza Abdul Aziz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H.A., Aroua, M.K., Yusoff, R. et al. Production of Palm-Based Esteramine Through Heterogeneous Catalysis. J Surfact Deterg 19, 11–18 (2016). https://doi.org/10.1007/s11743-015-1736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-015-1736-0

Keywords

Navigation