Skip to main content
Log in

Effect of Bis-(2-ethylhexyl)Phosphoric Acid on Sodium Bis-(2-ethylhexyl)Phosphate Microemulsion for Selective Extraction of Non-Ferrous Metals

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The effect of bis-(2-ethylhexyl)phosphoric acid (DEHPA) on the region of existence, conductivity and structure of sodium bis-(2-ethylhexyl)phosphate (NaDEHP) microemulsion has a dual nature and depends on DEHPA concentration. In the system NaDEHP–DEHPA–kerosene–water, the narrowing of the microemulsion region is observed with DEHPA concentration in the organic phase growth from 0.1 to 0.5 mol/L. The increase of DEHPA concentration in the organic phase from 0.1 to 0.4 mol/L leads to the reduction of electrical conductivity of the microemulsions. Based on the conductivity and viscosity measurements, we suppose the transition from reverse microemulsion with isolated droplets to percolate microemulsion at volume fraction of water 0.18 ( \(W = C_{{H_{2} O}} /C_{\text{NaDEHP}}\) = 8). Droplet size of the microemulsions increases linearly with W growth. The rise of DEHPA concentration in the organic phase from 0.1 to 0.3 mol/L causes the growth of the coefficient at W in the equation d = kW + b from 0.038 to 0.249, i.e., it increases the slope of the lines. In contrast, DEHPA introduction at the concentration 0.1 mol/L (in the organic phase) leads to the expansion of the microemulsion region, does not affect the conductivity and decreases the coefficient at W. The rate of copper recovery into the microemulsion increases considerably with the rise of DEHPA concentration from 0.0 to 0.3 mol/L; no dual effect is observed. The following composition of the microemulsion for non-ferrous metals leaching is recommended: C NaDEHP = 1.6 mol/L, C DEHPA = 0.3 mol/L (in the organic phase); W = 8–32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar P, Mittal KL (eds) (1999) Handbook of microemulsion science and technology. Marcel Dekker, New York

    Google Scholar 

  2. McEvoy E, Donegan S, Power J et al (2007) Recent advances in the development and application of microemulsion EKC. Electrophoresis 28:193–207

    Article  CAS  Google Scholar 

  3. López-Quintela MA, Tojo C, Blanco MC et al (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278

    Article  Google Scholar 

  4. Xu X-J, Gan LM (2005) Recent advances in the synthesis of nanoparticles of polymer latexes with high polymer-to-surfactant ratios by microemulsion polymerization. Curr Opin Colloid Interface Sci 10:239–244

    Article  CAS  Google Scholar 

  5. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276

    Article  CAS  Google Scholar 

  6. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74

    Article  CAS  Google Scholar 

  7. Salager JL, Forgiarini AM, Bullon J (2013) How to attain an ultralow interfacial tension and three-phase behavior with a surfactant formulation for enhanced oil recovery: a review. Part 1. optimum formulation for simple surfactant-oil-water ternary systems. J Surfact Deterg 16:449–472

    Article  CAS  Google Scholar 

  8. Watarai H (1997) Microemulsions in separation sciences. J Chromatogr A 780:93–102

    Article  CAS  Google Scholar 

  9. Tondre C (1999) Surfactant-based colloidal particles as the extracting phase for the removal of metal ions from aqueous environments: kinetic and applied aspects. ACS Symp Ser 740:139–157

    Article  Google Scholar 

  10. Osseo-Asare K (1988) Enhanced solvent extraction with water-in-oil microemulsions. Sep Sci Technol 23:1269–1284

    Article  CAS  Google Scholar 

  11. Brejza EV, Perez de Ortiz SE (2000) Phenomena affecting the equilibrium of Al(III) and Zn(II) extraction with Winsor II microemulsions. J Colloid Interface Sci 227:244–246

    Article  CAS  Google Scholar 

  12. Zhao YY, Tao Z, Chuan-Bo X, Xue-Mei X, Ling L, Zhan-Yu L (2008) Study on the extraction of cobalt and nickel from NH4SCN solution by Winsor II microemulsion system. Sep Purif Technol 60:174–179

    Article  Google Scholar 

  13. He D, Yang C, Ma M, Zhuang L, Chen X, Chen S (2004) Studies of the chemical properties of tri-n-octylamine–secondary octanol–kerosene–HCl–H2O microemulsions and its extraction characteristics for cadmium (II). Colloids Surf A 232:39–47

    Article  CAS  Google Scholar 

  14. Yurtov EV, Murashova NM (2011) Leaching the metals with extractant containing microemulsions. Theor Found Chem Eng 45:726–730

    Article  CAS  Google Scholar 

  15. Faure A, Tistchenko AM, Zemb T, Chachaty C (1985) Aggregation and dynamical behavior in sodium diethyl phosphate/ware/benzene inverted micelles. J Phys Chem 89:3373–3378

    Article  CAS  Google Scholar 

  16. Yu Z-J, Neuman RD (1995) Reversed micellar solution-to-bicontinuous microemulsion transition in sodium bis(2-ethylhexyl)phosphate/n-heptane/water system. Langmuir 11:1081–1086

    Article  CAS  Google Scholar 

  17. Kurumada K, Nagamine Sh, Tanigaki M (1999) Structure and properties of bis(2-ethylhexyl)phosphoric acid microemulsions with a network structure. Effect of counter ions. Colloids Surf A 148:305–311

    Article  CAS  Google Scholar 

  18. Yurtov EV, Murashova NM (2004) Phase equilibria and nonequilibrium structures in the sodium di-2-ethylhexyl phosphate-decane-water system. Colloid J 66:629–634

    Article  CAS  Google Scholar 

  19. Gaonkar AG, Neuman RD (1987) Interfacial activity, extractant selectivity and reversed micellization in hydrometallurgical liquid/liquid extraction systems. J Colloid Interface Sci 119:251–261

    Article  CAS  Google Scholar 

  20. Li Q, Li T, Wu J (2002) Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives. Colloids Surf A 197:101–109

    Article  CAS  Google Scholar 

  21. Chakraborty I, Moulik SP (2005) Physicochemical studies on microemulsions 9. Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils. J Colloid Interface Sci 289:530–541

    Article  CAS  Google Scholar 

  22. Cid-Samamed A, Garcia-Rio L, Fernandez-Gandara D, Mejuto JC, Morales J, Pérez-Lorenzo M (2008) Influence of n-alkyl acids on the percolative phenomena in AOT-based microemulsions. J Colloid Interface Sci 318:525–529

    Article  CAS  Google Scholar 

  23. Gradzielski M, Hoffmann H (1999) Rheological Properties of Microernulsions. In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology. Marcel Dekker, New York, pp 357–386

    Google Scholar 

  24. Kljajic A, Bester-Rogac M, Trost S, Zupet R, Pejovnik S (2011) Characterization of water/sodium bis(2-ethylhexyl) sulfosuccinate/sodium bis(amyl) sulfosuccinate/n-heptane mixed reverse micelles and w/o microemulsion systems: the influence of water and sodium bis(amyl) sulfosuccinate content. Colloids Surf A 385:249–255

    Article  CAS  Google Scholar 

  25. Borkovec M, Eicke H-F, Hammerich H, Das Gupta B (1988) Two percolation processes in microemulsions. J Phys Chem 92:206–211

    Article  CAS  Google Scholar 

  26. Mehta SK, Kaur K, Kaur G, Bhasin KK (2009) Percolating phenomenon in microemulsions: effect of external entity. In: Fanun M (ed) Microemulsions: properties and applications. CRC Press, USA, pp 59–76

    Google Scholar 

  27. Burauer S, Belkoura L, Stubenrauch C, Strey R (2003) Bicontinuous microemulsions revisited: a new approach to freze fracture electron microscopy (FFEM). Colloids Surf A 228:159–170

    Article  CAS  Google Scholar 

  28. Eicke H-F (1986) Aqueous nanophases in liquid hydrocarbons stabilized by ionic surfactants. In: Parfitt D, Eicke H-F (eds) Interfacial phenomena in apolar media. Marcel Dekker Inc, Basel, pp 41–89

    Google Scholar 

  29. Takashina S, Yoshida M, Gotoh K, Oshitani J (2008) Phase behavior and size variation of AOT-based W/O microemulsions by substituting H+ for Na+ as the counterion. Colloids Surf A 325:52–56

    Article  CAS  Google Scholar 

  30. Hanson C (ed) (1971) Recent advances in liquid–liquid extraction. Pergamon Press, New York

    Google Scholar 

  31. Rydberg J, Cox M, Musikas C, Choppin GR (eds) (2004) Solvent extraction principles and practice. Marcel Dekker, New York

    Google Scholar 

  32. Yurtov EV, Murashova NM. (2008) Microemulsion leaching of metals. In: Moyer, B.A. (ed.) Solvent extraction: fundamentals to industrial applications, proceedings of ISEC 2008 international solvent extraction conference, the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, pp.1597–1602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Murashova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashova, N.M., Levchishin, S.Y. & Yurtov, E.V. Effect of Bis-(2-ethylhexyl)Phosphoric Acid on Sodium Bis-(2-ethylhexyl)Phosphate Microemulsion for Selective Extraction of Non-Ferrous Metals. J Surfact Deterg 17, 1249–1258 (2014). https://doi.org/10.1007/s11743-014-1598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1598-x

Keywords

Navigation