Skip to main content
Log in

FE-simulation method for a flexible clamping technology for Body in White assemblies

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Due to the growing number of derivatives and the rising demand for electric vehicles, flexibility in automotive production becomes more and more important. The use of running clamping technology enables flexible clamping of remote laser welded Body in White assemblies. Although the process design for this new technology is challenging, no digital process design method is available. The finite element (FE) process simulation offers an opportunity to reduce time- and cost-intensive experiments during the part and process design phase. In this article, a new and comprehensive FE-simulation method for running clamping technology is presented. The clamping simulation is validated with experiments using L-specimens. Therefore, the clamping forces required to close the gap between part flanges are evaluated. Further, the clamping and mechanical joining simulation of a Body in White assembly is validated by comparing the resultant joint gaps. The capability of the simulation method is demonstrated by a numerical investigation of the influences of process parameters on the resultant joint gaps. The parameters that were investigated are geometrical inaccuracies, applied clamping force and design of the clamping device. The results obtained indicate that higher geometrical inaccuracies of parts can be accepted when using clamping devices with clamping supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Al-Zaher A, ElMaraghy W, Pasek ZJ (2012) Enabling car body customization through automotive framing systems design. In: ElMaraghy HA (ed) Enabling manufacturing competitiveness and economic sustainability: proceedings of the 4th international conference on changeable, Agile, Reconfigurable and Virtual Production (CARV2011), Montreal. Springer, Berlin, pp 445–451

    Google Scholar 

  2. MirRashed S, Mehr MR, Missler-Behr M et al (2016) Analyzing the causes and effects of complexity on different levels of automobile manufacturing systems. In: 21th IEEE conference on emerging technologies and factory automation (ETFA)

  3. Buehrle J, Bea M, Brockmann R (2013) Laser remote process technology on automotive manufacture. In: Proceedings of the FISITA 2012 world automotive congress: volume 11: advanced vehicle manufacturing technology, vol 199. Springer, Berlin, pp 89–97

    Google Scholar 

  4. Rippl P (1994) Industrieroboter zum Laserstrahlschweißen und -schneiden in der Fahrzeugindustrie. Eur Laser Mark 94:216–230

    Google Scholar 

  5. Goettsch U, Goth K, Lamping D et al (2015) Verfahren und Vorrichtung zum Fügen von Bauteilen (DE102015006421 A1)

  6. Lamping D (2017) Weiterentwicklung des Remote-Laserschweißens für das flexible Verbinden von Aluminium in der Großserie. Band 128. In: Hahn O, Meschut G (eds) Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik. Shaker Verlag, Herzogenrath

  7. Gilles R, Olivier D, Pascal V et al (2008) Welding of Steel Sheets, With and Without Surface Treatments. In: Blondeau R (ed) Metallurgy and mechanics of welding. ISTE, London, pp 279–312

    Google Scholar 

  8. Roll K, Lemke T, Wiegand K (2005) Possibilities and strategies for simulations and compensation for springback. In: Proceedings of the 6th international conference and workshop on numerical simulation of 3D sheet metal forming process (NUMISHEET), pp 295–302

  9. Kästle C (2016) Simulationsmethode zur Beurteilung der Maßhaltigkeit von rollgefalzten Karosseriebaugruppen im Zusammenbau. Dissertation. Universität Stuttgart

  10. Roll K (2008) Simulation of sheet metal forming—neccessary developments in the future, vol 7. LS-DYNA Anwenderforum, Bamberg, pp 59–68

    Google Scholar 

  11. Kästle C, Liewald M (2014) Virtual production planning and dimensional accuracy prediction of sheet metal components in the bodyshell work. In: Bargende M, Reuss H-C, Wiedemann J (eds) 14. Internationales Stuttgarter Symposium: Automobil- und Motorentechnik. Springer Fachmedien Wiesbaden, Wiesbaden, pp 227–239

    Google Scholar 

  12. Neugebauer R, Drossel WG, Rössinger M et al (2014) Roller Hemming simulation: state of the art and application limits. KEM 611–612:1062–1070. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1062

    Article  Google Scholar 

  13. Arroyo A, Pérez I, Gutierrez M et al (2010) Roller hemming: a new simulation model for the automotive industry. In: Hinduja S, Li L (eds) Proceedings of the 36th international MATADOR conference. Springer, London, pp 83–86

    Google Scholar 

  14. Ceretti E, Attanasio A, Fiorentino A et al (2007) Sheet Hemming with rolling tools: analysis and optimization of the part quality. KEM 344:357–364. https://doi.org/10.4028/www.scientific.net/KEM.344.357

    Article  Google Scholar 

  15. Loose T (2014) Coupled simulation of forming and welding with LS-DYNA for the design of distortion-compensation, vol 13. LS-DYNA Forum, Bamberg

    Google Scholar 

  16. Klöppel T, Erhart A, Haufe A et al (2015) Recent developments in LS-DYNA to close the virtual process chain for forming, press hardening and welding. KEM 651–653:1312–1318. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1312

    Article  Google Scholar 

  17. Bauer F, Werber A, Seiberlich T et al (2017) Process simulation model of a flexible clamping technology for sheet metal parts. Procedia Eng 183:303–308. https://doi.org/10.1016/j.proeng.2017.04.043

    Article  Google Scholar 

  18. Bauer F, Werber A, Merklein M (2017) Investigation of a process simulation method for flexible clamping of sheet metal parts. Procedia Eng 207:1599–1604. https://doi.org/10.1016/j.proeng.2017.10.1055

    Article  Google Scholar 

  19. Govik A, Nilsson L, Moshfegh R (2012) Finite element simulation of the manufacturing process chain of a sheet metal assembly. J Mater Process Technol 212(7):1453–1462. https://doi.org/10.1016/j.jmatprotec.2012.02.012

    Article  Google Scholar 

  20. Rosenschon M, Suttner S, Merklein M (2015) Evaluation of kinematic hardening models for multiple stress reversals under continuous cyclic shearing and multi-step bending. In: 10th European LS-DYNA conference, Würzburg

  21. Wieland M, Kaupper M, Merklein M (2013) Umform- und Rückfederungssimulation von Leichtbauwerkstoffen—Vergleichende Betrachtung von Zug-Druck- und Wechselbiegeversuchen zur Berücksichtigung des Bauschinger-Effekts. Tagungsband T36 des 33. EFB-Kolloquiums Blechverarbeitung, pp 347–357

  22. Livermore Software Technology Corporation (2016) LS-DYNA R9.0 keyword manual, vol II

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bauer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, F., Werber, A. FE-simulation method for a flexible clamping technology for Body in White assemblies. Prod. Eng. Res. Devel. 13, 259–271 (2019). https://doi.org/10.1007/s11740-019-00890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00890-7

Keywords

Navigation