Skip to main content
Log in

Structure optimisation of metallic load introduction elements embedded in CFRP

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The combination of construction parts made of fibre-reinforced plastics (FRP) and metal holds great lightweight design potential but places high demands on the necessary joining technologies. Metallic load introduction elements that are embedded in the manufacturing process of FRP components are a promising joining technology. In order to fully exploit the potential of this technology, approaches to increase the load bearing capacity of inserts, particularly under pull-out loads, have been missing. The aim is therefore to derive a method for the simulative structural optimisation of embedded inserts. The load bearing capacity increases under pull-out loads through smoothing of failure-critical stress peaks using the optimisation of the thickness distribution of the insert’s base plate. The increase of the load bearing capacity of the optimised insert geometry is confirmed through experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jármai K, Betti B (2017) Vehicle and automotive engineering. In: Proceedings of the JK2016, Miskolc, Hungary. Springer, Cham (s.l. ISBN: 2195-4364)

    Google Scholar 

  2. Holmes M (2013) Carbon fibre reinforced plastics market continues growth path. Reinf Plastics 57(6):24–29

    Article  Google Scholar 

  3. Atzeni E, Minetola P, Salmi A (2013) Dimensional analysis of a prototype mould-making process for thermoplastic resin transfer moulding. Int J Adv Manuf Technol 65(1–4):309–317

    Article  Google Scholar 

  4. Kim BJ, Lee DG (2008), Characteristics of joining inserts for composite sandwich panels. Compos Struct 86(1–3):55–60

    Article  Google Scholar 

  5. Schwarz M, Schürmann H, fickel M, Magin M, Peil C (2007) Zur Gestaltung von punktuellen Krafteinleitungen in Faserverbund-Strukturen. Konstruktion 6:90–96

    Google Scholar 

  6. Ferret B, Anduze M, Nardari C (1998) Metal inserts in structural composite materials manufactured by RTM. Compos Part A Appl Sci Manuf 29(5–6):693–700

    Article  Google Scholar 

  7. Hopmann C, Fecher L, Linnemann L, Bastian R et al (2013) Vergleich der Eigenschaften von Onserts und Inserts für eine Großserienfertigung von FVK-Strukturbauteilen, vol 9. Carl Hanser Verlag, WAK, Zeitschrift Kunststofftechnik, Karlsruhe, pp 178–206

    Google Scholar 

  8. Weimer C (2003) Preform-engineering: applied sewing technologies to incorporate part and process functions into dry textile reinforcements. Compos Sci Technol 63(14):2089–2098

    Article  Google Scholar 

  9. Molnar P, Mitschang P, Felhos D (2007) Improvement in bonding of functional elements with the fiber reinforced polymer structure by means of tailoring technology. J Compos Mater 41(21):2569–2583

    Article  Google Scholar 

  10. Herzberg C, Rödel. H, Zhao N, Waldmann M, Zoerner G (2009) Konfektionstechnische Fertigung textiler 3D-Preforms für komplexe Leichtbauanwendungen, vol 12. Chemnitzer Textiltechnik Tagung, Chemnitz, pp 231–235

    Google Scholar 

  11. Gebhardt J, Fleischer J (2014), Experimental investigation and performance enhancement of inserts in composite parts. Procedia CIRP 23(C):7–12

    Article  Google Scholar 

  12. Gebhardt J, Pottmeyer F, Fleischer J, Weidenmann K (2015) Characterization of metal inserts embedded in carbon fiber reinforced plastics in 20th Symposium on composites. Selected, peer reviewed papers from the 20th Symposium on Composites, July 1–3, 2015, Vienna, Austria, Hrsg. C. Edtmaier, Trans Tech Publ, Pfaffikon, pp 506–513

  13. Knops M (2008) Analysis of failure in fiber polymer laminates. The theory of Alfred Puck. Springer, Berlin (ISBN: 978-3-540-75764-1)

    Google Scholar 

  14. Kress G, Naeff P, Niedermeier M, Ermanni P (2004) Onsert strength design. Int J Adhes Adhes 24(3):201–209

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on investigations of the collaborative research program “Schwerpunktprogramm 1712” which is kindly supported by the German Research Foundation (DFG—Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schwennen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebhardt, J., Schwennen, J., Lorenz, F. et al. Structure optimisation of metallic load introduction elements embedded in CFRP. Prod. Eng. Res. Devel. 12, 131–140 (2018). https://doi.org/10.1007/s11740-018-0820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-018-0820-5

Keywords

Navigation