Skip to main content
Log in

Experimental investigation of different parameters at a combined cross wedge rolling and multi-directional forging process

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

To forge a flashless crankshaft within few steps and with low energy consumption innovative forging processes are necessary, such as cross wedge rolling and multi-directional forging. The direct combination of the two forming processes normally leads to flash at the bottom of the crankweb preform after the multi-directional forging. The reason for the flash generation is the rotation-symmetric cross wedge rolled billet, which is formed laterally to the main axis during multi-directional forging. In this paper, a parameter field in which flashless crankshaft preforms can be forged is presented. The parameters varied within the experimental research are the forming angle and the cross section area reduction at cross wedge rolling as well as the axis offset, the billet temperature and the forming velocity at the multi-directional forging. The limits of this flashless parameter field are shown in several diagrams. For a flashless combination of two forming process low values for all parameters such as a forming angle α = 30°, a cross section area reduction ΔA = 30%, and a billet temperature T = 1050 °C are recommended. Furthermore, the intensity of the influence of the significant parameters are shown. The cross section area reduction ΔA thereby caused the highest range at flash generation with 0.4 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ji H, Liu J, Wang B, Fu X, Xiao W, Hu Z (2017) A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. J Mater Process Technol 240(2017):1–11

    Article  Google Scholar 

  2. Li Q, Lovell M (2008) Cross wedge rolling failure mechanisms and industrial application. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-007-0979-y

    Google Scholar 

  3. Pater Z (2003) Tools optimization in cross wedge rolling. J Mater Process Technol 139(1–3):153–159

    Article  Google Scholar 

  4. Pater Z (2000) Theoretical and experimental analysis of cross wedge rolling process. Int J Mach Tools Manuf 40:49–63. https://doi.org/10.1016/S0890-6955(99)00047-4

    Article  Google Scholar 

  5. Yang C, Hu Z (2016) Research on the ovality of hollow shafts in cross wedge rolling with mandrel. Int J Adv Manuf Technol 83:67–76

    Article  Google Scholar 

  6. Ji H, Liu1a J, Wang B, Lin J, Tang X (2016) The process parameters effect of ovality in cross wedge rolling for hollow valve without mandril. MATEC Web Conf 80. https://doi.org/10.1051/matecconf/20168013003

  7. Fang G, Lei LP, Zeng P (2002) Three dimensional rigid-plastic finite element simulation for the two-roll cross wedge rolling. J Mater Process Technol 129:245–249. https://doi.org/10.1016/S0924-0136(02)00610-6

    Article  Google Scholar 

  8. Li Q, Lovell MR, Slaughter WS, Tagavi K (2002) Investigation of the morphology of internal defects in cross wedge rolling. J Mater Process Technol. https://doi.org/10.1016/S0924-0136(02)00303-5

    Google Scholar 

  9. Dong Y, Tagavi K, Lovell MR, Deng Z (2000) Analysis of stress in cross wedge rolling with application to failure. Int J Mech Sci. https://doi.org/10.1016/S0020-7403(99)00035-1

    MATH  Google Scholar 

  10. Pater Z, Bartnicki J, Samołyk (2005) Numerical modelling of cross-wedge rolling process of ball pin. J Mater Process Technol 164–165(2005): 1235–1240. https://doi.org/10.1016/j.jmatprotec.2005.02.140

    Article  Google Scholar 

  11. Pater Z, Tomczak J, Bulzak T (2016) Analysis of a cross wedge rolling process for producing drive shafts. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9662-5

    Google Scholar 

  12. Ji H, Liu J, Wang B, Zheng Z, Huang J, Hu Z (2015) Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation. Int J Adv Manuf Technol (2015) 77:15–26. https://doi.org/10.1007/s00170-014-6363-9

    Article  Google Scholar 

  13. Tomczak J, Pater Z, Bulzak T (2016) The influence of hollow billet thickness in rotary compression. Int J Adv Manuf Technol 82:1281–1291

    Article  Google Scholar 

  14. Meyer M, Stonis M, Behrens B-A (2012) Cross Wedge Rolling of Preforms for Crankshafts. Key Eng Mater 504–506:205–210. https://doi.org/10.4028/www.scientific.net/KEM.504-506.205

    Article  Google Scholar 

  15. Lis K, Wójcik L, Pater Z (2016) Numerical analysis of a skew rolling process u5, for producing a crankshaft preform. De Gruyter Open Eng. https://doi.org/10.1515/eng-2016-0087

    Google Scholar 

  16. Meyer M, Stonis M, Behrens BA (2015) Cross wedge rolling and bi-directional forging of preforms for crankshafts. Prod Eng Res Devel. https://doi.org/10.1007/s11740-014-0581-8

    Google Scholar 

  17. Doege E, Hustedt P, Altmann C, Specker A, Meyer M (2003) Precision forging of crankshafts. WGP Prod Enig Res Deve Band 10(2003), Heft 2, Seite 29–34

  18. Behrens BA, Doege E, Reinsch S, Telkamp K, Daehndel H, Specker A (2007) Precision forging processes for high-duty automotive components. J Mater Process Technol 185:139–146. https://doi.org/10.1016/j.jmatprotec.2006.03.132

    Article  Google Scholar 

  19. Behrens BA, Stonis M, Rasche N (2016) Influence of the forming angle in cross wedge rolling on the multi-directional forging of crankshafts. Int J Mater Form. https://doi.org/10.1007/s12289-016-1326-3

    Google Scholar 

  20. Behrens BA, Stonis M, Rasche N (2017) Influence of the cross section area reduction in cross wedge rolling on the multi-directional forging of crankshafts. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2017.1328151

    Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (Deutsche Forschungsgemeinschaft ¬– DFG) for the funding of the research project “ProKomb – Prozesskombination des Querkeilwalzens mit der mehrdirektionalen Umformung” (DFG STO 1011/5 − 1). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Rasche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasche, N., Langner, J., Stonis, M. et al. Experimental investigation of different parameters at a combined cross wedge rolling and multi-directional forging process. Prod. Eng. Res. Devel. 12, 35–43 (2018). https://doi.org/10.1007/s11740-017-0783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0783-y

Keywords

Navigation