Skip to main content
Log in

STEP product model for micro formed linked parts

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

A central challenge of micro forming production is the handling of component parts. The simple transformation from macro to micro scale of the forming and handling processes is complicated due to size effects. One solution for overcoming these effects is to handle the components as linked parts as long as possible. Linked parts are manufactured in multistage processes in which every individual process generates different requirements. Therefore, arrangements have to be adopted to administrate growing amounts of data, for the documented coordination of the processes and also for a reproducible production. A practicable method is the development of product data models. Of major importance is the product data modelling based on ISO 10303, also known as Standard for the Exchange of Product Model Data (STEP). STEP offers extensive possibilities for the application-neutral and unambiguous data exchange. Using STEP a basic product data model for the micro forming technology is designed. It is focussing on the modelling of linked parts production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vollertsen F (2008) Categories of size effects. Prod Eng Res Devel 2:377–383

    Article  Google Scholar 

  2. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzmann K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58(2):566–587

    Article  Google Scholar 

  3. Tracht K, Weikert F (2013) Handling of micro parts. In: Vollertsen F (ed) Micro metal forming. Springer, Heidelberg

    Google Scholar 

  4. International Organization on Standardisation (ISO) (1994) ISO 10303: standard for the exchange of product model data—Industrial automation systems and integration

  5. Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manufact Technol 50(2):445–462

    Article  Google Scholar 

  6. Valente A, Carpanzano E, Nassehi A, Newman ST (2010) A STEP compliant knowledge based schema to support shop-floor adaptive automation in dynamic manufacturing environments. CIRP Ann Manuf Technol 59(1):441–444

    Article  Google Scholar 

  7. Holland P, Standring PM, Long H, Mynors DJ (2002) Feature extraction from STEP (ISO 10303) CAD drawing files for metal forming process selection in an integrated design system. J Mater Process Technol 125–126(2002):446–455

    Article  Google Scholar 

  8. Mahshid R, Hansen HN, Arentoft M (2014) Characterization of precision of a handling system in high performance transfer press for micro forming. CIRP Ann Manuf Technol 63(1):497–500

    Article  Google Scholar 

  9. Fatikow S (2000) Mikroroboter und Mikromontage—Aufbau, Steuerung und Planung von flexiblen, mikroroboterbasierten Montagestationen. Teubner, Stuttgart (in German)

    Google Scholar 

  10. Wulfsberg JP, Kuhn A (2004) Work piece manipulation using standard industrial robots in the area of micro production. wt Werkstattstechnik Online 94(09):406–409 (in German)

    Google Scholar 

  11. Ellwood J, Burisch A, Schöttler K, Pokar G, Raatz A, Hesselbach J (2011) Size-adopted manipulation robots for microassembly. In: Büttgenbach S, Burisch A, Hesselbach J (eds) Manufacturing of active microsystems. Microtechnology and MEMS series. Springer, Heidelberg, pp 269–286

  12. Vandaele V, Lambert P, Delchambre A (2005) Non-contact handling in microassembly—acoustical levitation. Precis Eng 29(4):491–505

    Article  Google Scholar 

  13. Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, Zussmann E (2000) Assembly of microsystems. CIRP Ann Manufact Technol 49(2):451–472

    Article  Google Scholar 

  14. Tracht K, Schenck C, Weikert F, Kuhfuß B (2010) Conveyance of micro-cold-formed parts in a linkage. wt Werkstattstechnik Online 100(11/12):864–868 (in German)

    Google Scholar 

  15. Merklein M, Stellin T, Engel U (2011) Simulation of a full forward extrusion process from metal strip. In: AIP conference proceedings, vol 1353, pp 493–498

  16. Merklein M, Stellin T, Engel U (2012) Experimental study of a full forward extrusion process from metal strip. Key Eng Mater 504–506:587–592

    Article  Google Scholar 

  17. Kuhfuß B, Moumi E, Tracht K, Weikert F, Vollertsen F, Stephen A (2011) Process chains in microforming technology using scaling effects. In: AIP conference proceedings, vol 1353, pp 535–540

  18. Tracht K, Weikert F, Hanke T, Kuhfuß B, Hellwig C (2011) Modeling of linked parts in micro-forming. wt Werkstattstechnik Online 101(11/12):765–769 (in German)

    Google Scholar 

  19. Tracht K, Weikert F, Kuhfuß B, Hellwig C, Schenck C (2011) Technologische und datentechnische Vernetzung von Fertigungs-einrichtungen der Mikroumformung. In: Kraft O, Haug A, Vollertsen F, Büttgenbach S (eds) Kolloquium Mikroproduktion und Abschlusskolloquium SFB 499. Karlsruhe, pp 133 138 (in German)

  20. International Organization on Standardisation (ISO) (2004) ISO 10303-11: standard for the exchange of product model data—Industrial automation systems and integration—Product data representation and exchange. Part 11: Description methods: the EXPRESS language reference manual

  21. International Organization on Standardisation (ISO) (2001) ISO 10303-207: standard for the exchange of product model data—Industrial automation systems and integration—Product data representation and exchange. Part 207: Application protocol: sheet metal die planning and design

  22. Tracht K, Weikert F, Hanke T (2012) Suitability of the ISO 10303-207 standard for product modeling of line linked micro parts. In: Chryssolouris G, Mourtzis D (eds) Proceedings of the 45th international conference on manufacturing systems (CMS2012), Athens, pp 406–413

  23. International Organization on Standardisation (ISO) (2005) ISO 10303-41: standard for the exchange of product model data—Industrial automation systems and integration—Product data representation and exchange. Part 41: Integrated generic resource: fundamentals of product description and support

  24. Sonderforschungsbereich 747 (2015): SFB 747 “Mikrokaltumformen”—allgemeine Beschreibung. http://www.sfb747.uni-bremen.de/sfb-747-general-description/view?set_language=en. 23 Dec 2015

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for Subproject C5 “Teileverbunde” within the SFB 747 (Collaborative Research Center) “Mikrokaltumformen—Prozesse, Charakterisierung, Optimierung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Weikert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weikert, F., Tracht, K. STEP product model for micro formed linked parts. Prod. Eng. Res. Devel. 10, 293–303 (2016). https://doi.org/10.1007/s11740-016-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0667-6

Keywords

Navigation