Skip to main content

Advertisement

Log in

Novel COVID-19 biomarkers identified through multi-omics data analysis: N-acetyl-4-O-acetylneuraminic acid, N-acetyl-L-alanine, N-acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate

  • EM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

This study aims to apply machine learning models to identify new biomarkers associated with the early diagnosis and prognosis of SARS-CoV-2 infection.Plasma and serum samples from COVID-19 patients (mild, moderate, and severe), patients with other pneumonia (but with negative COVID-19 RT-PCR), and healthy volunteers (control) from hospitals in four different countries (China, Spain, France, and Italy) were analyzed by GC–MS, LC–MS, and NMR. Machine learning models (PCA and PLS-DA) were developed to predict the diagnosis and prognosis of COVID-19 and identify biomarkers associated with these outcomes.A total of 1410 patient samples were analyzed. The PLS-DA model presented a diagnostic and prognostic accuracy of around 95% of all analyzed data. A total of 23 biomarkers (e.g., spermidine, taurine, l-aspartic, l-glutamic, l-phenylalanine and xanthine, ornithine, and ribothimidine) have been identified as being associated with the diagnosis and prognosis of COVID-19. Additionally, we also identified for the first time five new biomarkers (N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-l-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate) that are also associated with the severity and diagnosis of COVID-19. These five new biomarkers were elevated in severe COVID-19 patients compared to patients with mild disease or healthy volunteers.The PLS-DA model was able to predict the diagnosis and prognosis of COVID-19 around 95%. Additionally, our investigation pinpointed five novel potential biomarkers linked to the diagnosis and prognosis of COVID-19: N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-l-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. These biomarkers exhibited heightened levels in severe COVID-19 patients compared to those with mild COVID-19 or healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Study data may be made available by the corresponding author when requested by readers.

Abbreviations

ANN:

Artificial neural network

EPO:

External parameter orthogonalization

GC–MS:

Gas chromatography coupled to mass spectrometry

GLSW:

Generalized least squares weighting

LC–MS:

Liquid chromatography coupled with mass spectrometry

NMR:

Nuclear magnetic resonance

OSC:

Orthogonal signal correction

PLS-DA:

Discriminant analysis by partial least squares

PCA:

Principal component analysis

RF:

Random forest

RMSEC:

Root mean square error of calibration

RMSECV:

Root mean square cross-validation error

RT-PCR:

Reverse transcription polymerase chain reaction

SVM:

Support vector machine

VIP:

Variable importance in projection

References

  1. Byeon SK, Madugundu AK, Garapati K, Ramarajan MG, Saraswat M, Kumar P-M, Hughes T, Shah R, Patnaik MM, Chia N, Ashrafzadeh-Kian S, Yao JD, Pritt BS, Cattaneo R, Salama ME, Zenka RM, Kipp BR, Grebe SKG, Singh RJ, Sadighi Akha AA, Algeciras-Schimnich A, Dasari S, Olson JE, Walsh JR, Venkatakrishnan AJ, Jenkinson G, O’Horo JC, Badley AD, Pandey A (2022) Development of a multiomics model for identification of predictive biomarkers for COVID-19 severity: a retrospective cohort study. Lancet Digit Health 4:e632–e645. https://doi.org/10.1016/S2589-7500(22)00112-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Richard VR, Gaither C, Popp R, Chaplygina D, Brzhozovskiy A, Kononikhin A, Mohammed Y, Zahedi RP, Nikolaev EN, Borchers CH (2022) Early prediction of COVID-19 patient survival by targeted plasma multi-omics and machine learning. Mol Cell Proteom. https://doi.org/10.1016/j.mcpro.2022.100277

    Article  Google Scholar 

  3. Frampas CF, Longman K, Spick M, Lewis HM, Costa CDS, Stewart A, Dunn-Walters D, Greener D, Evetts G, Skene DJ, Trivedi D, Pitt A, Hollywood K, Barran P, Bailey MJ (2022) Untargeted saliva metabolomics by liquid chromatography–mass spectrometry reveals markers of COVID-19 severity. PLoS ONE 17:e0274967. https://doi.org/10.1371/journal.pone.0274967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruszkiewicz DM, Sanders D, O’Brien R, Hempel F, Reed MJ, Riepe AC, Bailie K, Brodrick E, Darnley K, Ellerkmann R, Mueller O, Skarysz A, Truss M, Wortelmann T, Yordanov S, Thomas CLP, Schaaf B, Eddleston M (2020) Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry—a feasibility study. EClinicalMedicine 29–30:100609. https://doi.org/10.1016/j.eclinm.2020.100609

    Article  Google Scholar 

  5. Correia BSB, Ferreira VG, Piagge PMFD, Almeida MB, Assunção NA, Raimundo JRS, Fonseca FLA, Carrilho E, Cardoso DR (2022) 1H qNMR-based metabolomics discrimination of Covid-19 severity. J Proteome Res 21:1640–1653. https://doi.org/10.1021/acs.jproteome.1c00977

    Article  CAS  PubMed  Google Scholar 

  6. Mendez KM, Broadhurst DI, Reinke SN (2019) The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics. https://doi.org/10.1007/s11306-019-1608-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23. https://doi.org/10.1016/j.aca.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  8. Mendez KM, Reinke SN, Broadhurst DI (2019) A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 15:150. https://doi.org/10.1007/s11306-019-1612-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alwosheel A, van Cranenburgh S, Chorus CG (2018) Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J Choice Modell 28:167–182. https://doi.org/10.1016/j.jocm.2018.07.002

    Article  Google Scholar 

  10. Albóniga OE, Moreno E, Martínez-Sanz J, Vizcarra P, Ron R, Díaz-Álvarez J, Rosas M, Sánchez-Conde M, Galán JC, Angulo S, Moreno S, Barbas C, Serrano-Villar S (2023) Differential abundance of lipids and metabolites related to SARS-CoV-2 infection and susceptibility. Sci Rep. https://doi.org/10.1038/s41598-023-40999-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P-É, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saheb Sharif-Askari N, Soares NC, Mohamed HA, Saheb Sharif-Askari F, Alsayed HAH, Al-Hroub H, Salameh L, Osman RS, Mahboub B, Hamid Q, Semreen MH, Halwani R (2022) Saliva metabolomic profile of COVID-19 patients associates with disease severity. Metabolomics. https://doi.org/10.1007/s11306-022-01936-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahmud I, Garrett TJ (2020) Mass spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J Am Soc Mass Spectrom 31:2013–2024. https://doi.org/10.1021/jasms.0c00238

    Article  CAS  PubMed  Google Scholar 

  14. Bruzzone C, Bizkarguenaga M, Gil-Redondo R, Diercks T, Arana E, García de Vicuña A, Seco M, Bosch A, Palazón A, San Juan I, Laín A, Gil-Martínez J, Bernardo-Seisdedos G, Fernández-Ramos D, Lopitz-Otsoa F, Embade N, Lu S, Mato JM, Millet O (2020) SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles of serum. IScience 23:101645. https://doi.org/10.1016/j.isci.2020.101645

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi D, Yan R, Lv L, Jiang H, Lu Y, Sheng J, Xie J, Wu W, Xia J, Xu K, Gu S, Chen Y, Huang C, Guo J, Du Y, Li L (2021) The serum metabolome of COVID-19 patients is distinctive and predictive. Metabolism 118:154739. https://doi.org/10.1016/j.metabol.2021.154739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albóniga OE, Jiménez D, Sánchez-Conde M, Vizcarra P, Ron R, Herrera S, Martínez-Sanz J, Moreno E, Moreno S, Barbas C, Serrano-Villar S (2022) Metabolic snapshot of plasma samples reveals new pathways implicated in SARS-CoV-2 pathogenesis. J Proteome Res 21:623–634. https://doi.org/10.1021/acs.jproteome.1c00786

    Article  CAS  PubMed  Google Scholar 

  17. Barberis E, Timo S, Amede E, Vanella VV, Puricelli C, Cappellano G, Raineri D, Cittone MG, Rizzi E, Pedrinelli AR, Vassia V, Casciaro FG, Priora S, Nerici I, Galbiati A, Hayden E, Falasca M, Vaschetto R, Sainaghi PP, Dianzani U, Rolla R, Chiocchetti A, Baldanzi G, Marengo E, Manfredi M (2020) Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int J Mol Sci 21:8623. https://doi.org/10.3390/ijms21228623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, Marlet J, Stefic K, Benz-de Bretagne I, Cannet P, Lumbu H, Morel T, Boulard P, Andres CR, Vourc’h P, Hérault O, Guillon A, Emond P (2020) The specific metabolome profiling of patients infected by SARS-COV-2 supports the key role of tryptophan-nicotinamide pathway and cytosine metabolism. Sci Rep 10:16824. https://doi.org/10.1038/s41598-020-73966-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caterino M, Costanzo M, Fedele R, Cevenini A, Gelzo M, Di Minno A, Andolfo I, Capasso M, Russo R, Annunziata A, Calabrese C, Fiorentino G, D’Abbraccio M, Dell’Isola C, Fusco FM, Parrella R, Fabbrocini G, Gentile I, Castaldo G, Ruoppolo M (2021) The serum metabolome of moderate and severe COVID-19 patients reflects possible liver alterations involving carbon and nitrogen metabolism. Int J Mol Sci 22:9548. https://doi.org/10.3390/ijms22179548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barberis E, Amede E, Tavecchia M, Marengo E, Cittone MG, Rizzi E, Pedrinelli AR, Tonello S, Minisini R, Pirisi M, Manfredi M, Sainaghi PP (2021) Understanding protection from SARS-CoV-2 using metabolomics. Sci Rep 11:13796. https://doi.org/10.1038/s41598-021-93260-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang T-L, Wu S, Tang H-S, Wang K, Duan Y-X, Li H (2015) Progress of chemometrics in laser-induced breakdown spectroscopy analysis. Chin J Anal Chem 43:939–948. https://doi.org/10.1016/S1872-2040(15)60832-5

    Article  CAS  Google Scholar 

  22. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta Part B At Spectrosc 101:171–182. https://doi.org/10.1016/j.sab.2014.08.039

    Article  ADS  CAS  Google Scholar 

  23. Galbács G (2015) A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem 407:7537–7562. https://doi.org/10.1007/s00216-015-8855-3

    Article  CAS  PubMed  Google Scholar 

  24. Castro JP, Pereira-Filho ER (2016) Twelve different types of data normalization for the proposition of classification{,} univariate and multivariate regression models for the direct analyses of alloys by laser-induced breakdown spectroscopy (LIBS). J Anal At Spectrom 31:2005–2014. https://doi.org/10.1039/C6JA00224B

    Article  CAS  Google Scholar 

  25. Zorov NB, Gorbatenko AA, Labutin TA, Popov AM (2010) A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction. Spectrochim Acta Part B At Spectrosc 65:642–657. https://doi.org/10.1016/j.sab.2010.04.009

    Article  ADS  CAS  Google Scholar 

  26. Pořízka P, Klus J, Hrdlička A, Vrábel J, Škarková P, Prochazka D, Novotný J, Novotný K, Kaiser J (2017) Impact of laser-induced breakdown spectroscopy data normalization on multivariate classification accuracy. J Anal At Spectrom 32:277–288. https://doi.org/10.1039/C6JA00322B

    Article  CAS  Google Scholar 

  27. Pořízka P, Klus J, Prochazka D, Képeš E, Hrdlička A, Novotný J, Novotný K, Kaiser J (2016) Laser-induced breakdown spectroscopy coupled with chemometrics for the analysis of steel: the issue of spectral outliers filtering. Spectrochim Acta Part B At Spectrosc 123:114–120. https://doi.org/10.1016/j.sab.2016.08.008

    Article  ADS  CAS  Google Scholar 

  28. Yaroshchyk P, Eberhardt JE (2014) Automatic correction of continuum background in laser-induced breakdown spectroscopy using a model-free algorithm. Spectrochim Acta Part B At Spectrosc 99:138–149. https://doi.org/10.1016/j.sab.2014.06.020

    Article  ADS  CAS  Google Scholar 

  29. Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128:32–36. https://doi.org/10.1039/b209155k

    Article  ADS  CAS  PubMed  Google Scholar 

  30. de Fátima Cobre A, Surek M, Stremel DP, Fachi MM, Lobo Borba HH, Tonin FS, Pontarolo R (2022) Diagnosis and prognosis of COVID-19 employing analysis of patients’ plasma and serum via LC–MS and machine learning. Comput Biol Med 146:105659. https://doi.org/10.1016/j.compbiomed.2022.105659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pang Z, Zhou G, Chong J, Xia J (2021) Comprehensive meta-analysis of COVID-19 global metabolomics datasets. Metabolites 11:44. https://doi.org/10.3390/metabo11010044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Folch-Fortuny A, Arteaga F, Ferrer A (2015) PCA model building with missing data: new proposals and a comparative study. Chemometr Intell Lab Syst 146:77–88. https://doi.org/10.1016/j.chemolab.2015.05.006

    Article  CAS  Google Scholar 

  33. de Fátima Cobre A, Stremel DP, Noleto GR, Fachi MM, Surek M, Wiens A, Tonin FS, Pontarolo R (2021) Diagnosis and prediction of COVID-19 severity: can biochemical tests and machine learning be used as prognostic indicators? Comput Biol Med 134:104531. https://doi.org/10.1016/j.compbiomed.2021.104531

    Article  CAS  Google Scholar 

  34. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148. https://doi.org/10.1080/00401706.1969.10490666

    Article  Google Scholar 

  35. Wienold J, Iwata T, Sarey Khanie M, Erell E, Kaftan E, Rodriguez RG, Yamin Garreton JA, Tzempelikos T, Konstantzos I, Christoffersen J, Kuhn TE, Pierson C, Andersen M (2019) Cross-validation and robustness of daylight glare metrics. Light Res Technol 51:983–1013. https://doi.org/10.1177/1477153519826003

    Article  Google Scholar 

  36. Ruiz-Perez D, Guan H, Madhivanan P, Mathee K, Narasimhan G (2020) So you think you can PLS-DA? BMC Bioinform 21:2. https://doi.org/10.1186/s12859-019-3310-7

    Article  Google Scholar 

  37. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA, Anal Methods 5:3790–3798. https://doi.org/10.1039/c3ay40582f

    Article  CAS  Google Scholar 

  38. Favilla S, Durante C, Vigni ML, Cocchi M (2013) Assessing feature relevance in NPLS models by VIP. Chemom Intell Lab Syst 129:76–86. https://doi.org/10.1016/j.chemolab.2013.05.013

    Article  CAS  Google Scholar 

  39. Cocchi M, Biancolillo A, Marini F (2018) Chapter ten - chemometric methods for classification and feature selection. In: Jaumot J, Bedia C, Tauler R (eds) Data analysis for omic sciences: methods and applications. Elsevier, pp 265–299

    Chapter  Google Scholar 

  40. Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, Huang J, Zhang L, Chen L, Fan H, Clarke M (2021) Artificial intelligence for COVID-19: a systematic review. Front Med (Lausanne) 8:704256. https://doi.org/10.3389/fmed.2021.704256

    Article  PubMed  Google Scholar 

  41. Simón-Manso Y, Lowenthal MS, Kilpatrick LE, Sampson ML, Telu KH, Rudnick PA, Mallard WG, Bearden DW, Schock TB, Tchekhovskoi DV, Blonder N, Yan X, Liang Y, Zheng Y, Wallace WE, Neta P, Phinney KW, Remaley AT, Stein SE (2013) Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal Chem 85:11725–11731. https://doi.org/10.1021/ac402503m

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Bowers J, Liu L, Wei S, Gowda GAN, Hammoud Z, Raftery D (2012) Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS ONE 7:e30181. https://doi.org/10.1371/journal.pone.0030181

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rees CA, Rostad CA, Mantus G, Anderson EJ, Chahroudi A, Jaggi P, Wrammert J, Ochoa JB, Ochoa A, Basu RK, Heilman S, Harris F, Lapp SA, Hussaini L, Vos MB, Brown LA, Morris CR (2021) Altered amino acid profile in patients with SARS-CoV-2 infection. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2101708118

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luporini RL, Pott-Junior H, Di Medeiros Leal MCB, Castro A, Ferreira AG, Cominetti MR, de Freitas Anibal F (2021) Phenylalanine and COVID-19: tracking disease severity markers. Int Immunopharmacol 101:108313. https://doi.org/10.1016/j.intimp.2021.108313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamel KS, Oh MS, Halperin ML (2020) L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int 97:75–88. https://doi.org/10.1016/j.kint.2019.08.023

    Article  CAS  PubMed  Google Scholar 

  46. Nechipurenko YD, Semyonov DA, Lavrinenko IA, Lagutkin DA, Generalov EA, Zaitceva AY, Matveeva OV, Yegorov YE (2021) The role of acidosis in the pathogenesis of severe forms of COVID-19. Biology (Basel) 10:852. https://doi.org/10.3390/biology10090852

    Article  CAS  PubMed  Google Scholar 

  47. De Backer D (2003) Lactic acidosis. Intensive Care Med 29:699–702. https://doi.org/10.1007/s00134-003-1746-7

    Article  PubMed  Google Scholar 

  48. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A (2020) COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab 22:1935–1941. https://doi.org/10.1111/dom.14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M, Lippi G (2020) Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: a pooled analysis. Am J Emerg Med 38:1722–1726. https://doi.org/10.1016/j.ajem.2020.05.0734

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T (2022) Lactate metabolism in human health and disease. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-022-01151-3

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100. https://doi.org/10.1016/j.mito.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  52. Martha JW, Wibowo A, Pranata R (2021) Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: a systematic review and meta-analysis. Postgrad Med J. https://doi.org/10.1136/postgradmedj-2020-139542

    Article  PubMed  Google Scholar 

  53. Hariyanto TI, Japar KV, Kwenandar F, Damay V, Siregar JI, Lugito NPH, Tjiang MM, Kurniawan A (2021) Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: a systematic review and meta-analysis. Am J Emerg Med 41:110–119. https://doi.org/10.1016/j.ajem.2020.12.076

    Article  PubMed  Google Scholar 

  54. Mehta AA, Haridas N, Belgundi P, Jose WM (2021) A systematic review of clinical and laboratory parameters associated with increased severity among COVID-19 patients. Diabetes Metab Syndr 15:535–541. https://doi.org/10.1016/j.dsx.2021.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carpenè G, Onorato D, Nocini R, Fortunato G, Rizk JG, Henry BM, Lippi G (2022) Blood lactate concentration in COVID-19: a systematic literature review. Clin Chem Lab Med 60:332–337. https://doi.org/10.1515/cclm-2021-1115

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Liu G, Wang L, Liang Y, Zhou Q, Wu F, Yao J, Chen B (2020) From the insight of glucose metabolism disorder: oxygen therapy and blood glucose monitoring are crucial for quarantined COVID-19 patients. Ecotoxicol Environ Saf 197:110614. https://doi.org/10.1016/j.ecoenv.2020.110614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Páez-Franco JC, Maravillas-Montero JL, Mejía-Domínguez NR, Torres-Ruiz J, Tamez-Torres KM, Pérez-Fragoso A, Germán-Acacio JM, Ponce-de-León A, Gómez-Martín D, Ulloa-Aguirre A (2022) Metabolomics analysis identifies glutamic acid and cystine imbalances in COVID-19 patients without comorbid conditions. Implications on redox homeostasis and COVID-19 pathophysiology. PLoS ONE 17:e0274910. https://doi.org/10.1371/journal.pone.0274910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reverté L, Yeregui E, Olona M, Gutiérrez-Valencia A, Buzón MJ, Martí A, Gómez-Bertomeu F, Auguet T, López-Cortés LF, Burgos J, Benavent-Bofill C, Boqué C, García-Pardo G, Ruiz-Mateos E, Mestre MT, Vidal F, Viladés C, Peraire J, Rull A (2022) Fetuin-A, inter-α-trypsin inhibitor, glutamic acid and ChoE (18:0) are key biomarkers in a panel distinguishing mild from critical coronavirus disease 2019 outcomes. Clin Transl Med 12:e704. https://doi.org/10.1002/ctm2.704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cruzat V, Rogero MM, Keane KN, Curi R, Newsholme P (2018) Glutamine: metabolism and immune function. Suppl Clin Transl 10:1–31. https://doi.org/10.3390/nu10111564

    Article  CAS  Google Scholar 

  60. Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI (2016) Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. Nutrire 41:1–34. https://doi.org/10.1186/s41110-016-0021-y

    Article  CAS  Google Scholar 

  61. Doğan HO, Şenol O, Bolat S, Yıldız ŞN, Büyüktuna SA, Sarıismailoğlu R, Doğan K, Hasbek M, Hekim SN (2021) Understanding the pathophysiological changes via untargeted metabolomics in COVID-19 patients. J Med Virol 93:2340–2349. https://doi.org/10.1002/jmv.26716

    Article  CAS  PubMed  Google Scholar 

  62. Hložek T, Křížek T, Tůma P, Bursová M, Coufal P, Čabala R (2017) Quantification of paracetamol and 5-oxoproline in serum by capillary electrophoresis: Implication for clinical toxicology. J Pharm Biomed Anal 145:616–620. https://doi.org/10.1016/j.jpba.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  63. Al-Jishi E, Meyer BF, Rashed MS, Al-Essa M, Al-Hamed MH, Sakati N, Sanjad S, Ozand PT, Kambouris M (1999) Clinical, biochemical, and molecular characterization of patients with glutathione synthetase deficiency. Clin Genet 55:444–449. https://doi.org/10.1034/j.1399-0004.1999.550608.x

    Article  CAS  PubMed  Google Scholar 

  64. Collison LW, Murphy EJ, Jolly CA (2008) Glycerol-3-phosphate acyltransferase-1 regulates murine T-lymphocyte proliferation and cytokine production. Am J Physiol Cell Physiol 295:C1543–C1549. https://doi.org/10.1152/ajpcell.00371.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, Liu W, Huang M, Yu Y, Yang Q, Zhu T, Xu J, Mu J, Wang Y, Wang H, Tang T, Ren Y, Wu Y, Lin S-H, Qiu Y, Zhang D-Y, Shang Y, Zhou X (2020) Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl Sci Rev 7:1157–1168. https://doi.org/10.1093/nsr/nwaa086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chanda B, Xia Y, Mandal MK, Yu K, Sekine K-T, Gao Q, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427. https://doi.org/10.1038/ng.798

    Article  CAS  PubMed  Google Scholar 

  67. Jensen MD, Ekberg K, Landau BR, Landau Lipid BR (2001) Lipid metabolism during fasting. http://www.ajpendo.org

  68. Xue LL, Chen HH, Jiang JG (2017) Implications of glycerol metabolism for lipid production. Prog Lipid Res 68:12–25. https://doi.org/10.1016/j.plipres.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  69. Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F (2020) The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci 21:3544. https://doi.org/10.3390/ijms21103544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahrooz A, Muscogiuri G, Buzzetti R, Maddaloni E (2021) The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism. Endocrine 72:317–325. https://doi.org/10.1007/s12020-021-02729-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang I, Lim MA, Pranata R (2020) Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia—a systematic review, meta-analysis, and meta-regression: diabetes and COVID-19. Diabetes Metab Syndr 14:395–403. https://doi.org/10.1016/j.dsx.2020.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  72. Han M, Ma K, Wang X, Yan W, Wang H, You J, Wang Q, Chen H, Guo W, Chen T, Ning Q, Luo X (2021) Immunological characteristics in type 2 diabetes mellitus among COVID-19 patients. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2021.596518

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheng Y, Yue L, Wang Z, Zhang J, Xiang G (2021) Hyperglycemia associated with lymphopenia and disease severity of COVID-19 in type 2 diabetes mellitus. J Diabetes Compl 35:107809. https://doi.org/10.1016/j.jdiacomp.2020.107809

    Article  CAS  Google Scholar 

  74. Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15:104–116. https://doi.org/10.1038/nri3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kočar E, Režen T, Rozman D (2021) Cholesterol, lipoproteins, and COVID-19: basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158849. https://doi.org/10.1016/j.bbalip.2020.158849

    Article  CAS  PubMed  Google Scholar 

  76. Masana L, Correig E, Ibarretxe D, Anoro E, Arroyo JA, Jericó C, Guerrero C, Miret ML, Näf S, Pardo A, Perea V, Pérez-Bernalte R, Plana N, Ramírez-Montesinos R, Royuela M, Soler C, Urquizu-Padilla M, Zamora A, Pedro-Botet J, Rodríguez-Borjabad C, Andreychuk N, Malo A, Matas L, del Señor Cortes-Fernandez M, Mauri M, Borrallo RM, Pedragosa À, Gil-Lluís P, Lacal-Martínez A, Barragan-Galló P, Vives-Masdeu G, Arto-Fernández C, El Boutrouki O, Vázquez-Escobales A, Antón-Alonso MC, Rivero-Santana S, Gómez A, García S, Rial-Lorenzo N, Ruiz-Ortega L, Alonso-Gisbert O, Méndez-Martínez AI, Iglesias-López H, Climent E, Güerri R, Soldado J, Fanlo M, Taboada A, Gutierrez L (2021) Low HDL and high triglycerides predict COVID-19 severity. Sci Rep. https://doi.org/10.1038/s41598-021-86747-5

    Article  PubMed  PubMed Central  Google Scholar 

  77. Abbas A-K, Xia W, Tranberg M, Wigström H, Weber SG, Sandberg M (2008) S-sulfo-cysteine is an endogenous amino acid in neonatal rat brain but an unlikely mediator of cysteine neurotoxicity. Neurochem Res 33:301–307. https://doi.org/10.1007/s11064-007-9441-7

    Article  CAS  PubMed  Google Scholar 

  78. Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Yan H, Ma S, Rattray NJW, Casanovas-Massana A, Israelow B, Klein J, Lucas C, Mao T, Moore AJ, Muenker MC, Oh JE, Silva J, Wong P, Ko AI, Khan SA, Iwasaki A, Johnson CH (2021) Kynurenic acid may underlie sex-specific immune responses to COVID-19. Sci Signal. https://doi.org/10.1126/scisignal.abf8483

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng L, Li H, Li L, Liu C, Yan S, Chen H, Li Y (2020) Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Lab Anal. https://doi.org/10.1002/jcla.23618

    Article  PubMed  PubMed Central  Google Scholar 

  80. Melo AKG, Milby KM, Caparroz ALMA, Pinto ACPN, Santos RRP, Rocha AP, Ferreira GA, Souza VA, Valadares LDA, Vieira RMRA, Pileggi GS, Trevisani VFM (2021) Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. PLoS ONE 16:e0253894. https://doi.org/10.1371/journal.pone.0253894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dewulf JP, Martin M, Marie S, Oguz F, Belkhir L, De Greef J, Yombi JC, Wittebole X, Laterre PF, Jadoul M, Gatto L, Bommer GT, Morelle J (2022) Urine metabolomics links dysregulation of the tryptophan-kynurenine pathway to inflammation and severity of COVID-19. Sci Rep. https://doi.org/10.1038/s41598-022-14292-w

    Article  PubMed  PubMed Central  Google Scholar 

  82. Martínez-Gómez LE, Ibarra-González I, Fernández-Lainez C, Tusie T, Moreno-Macías H, Martinez-Armenta C, Jimenez-Gutierrez GE, Vázquez-Cárdenas P, Vidal-Vázquez P, Ramírez-Hinojosa JP, Rodríguez-Zulueta AP, Vargas-Alarcón G, Rojas-Velasco G, Sánchez-Muñoz F, Posadas-Sanchez R, de Martínez-Ruiz FJ, Zayago-Angeles DM, Moreno ML, Barajas-Galicia E, Lopez-Cisneros G, Gonzalez-Fernández NC, Ortega-Peña S, Herrera-López B, Olea-Torres J, Juárez-Arias M, Rosas-Vásquez M, Cabrera-Nieto SA, Magaña JJ, Camacho-Rea MDC, Suarez-Ahedo C, Coronado-Zarco I, Valdespino-Vázquez MY, Martínez-Nava GA, Pineda C, Vela-Amieva M, López-Reyes A (2022) Metabolic reprogramming in SARS-CoV-2 infection impacts the outcome of COVID-19 patients. Front Immunol 13:936106. https://doi.org/10.3389/fimmu.2022.936106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Brazilian National Council of Technological and Scientific Development (CNPq) and CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil) for research funding – Finance Code 001.

Funding

The authors reported there is no funding associated with the work featured in this article.

Author information

Authors and Affiliations

Authors

Contributions

AdFC: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing – original draft, Visualization. ACA: Formal analysis, Writing – review & editing, Visualization. ARG: Formal analysis, Writing – review & editing, Visualization, Supervision, Visualization. RELL: Conceptualization, Methodology, Validation, Formal analysis, Investigation. KZAD: Formal analysis, Writing – review & editing. LMF: Methodology, formal analysis, Investigation, Writing – review & editing, Visualization. FST: Conceptualization, Writing – review & editing, Supervision. RP: Conceptualization, Writing – review & editing, Visualization, Supervision.

Corresponding author

Correspondence to Roberto Pontarolo.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Fátima Cobre, A., Alves, A.C., Gotine, A.R.M. et al. Novel COVID-19 biomarkers identified through multi-omics data analysis: N-acetyl-4-O-acetylneuraminic acid, N-acetyl-L-alanine, N-acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. Intern Emerg Med (2024). https://doi.org/10.1007/s11739-024-03547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11739-024-03547-1

Keywords

Navigation