Skip to main content
Log in

Prognostic value of cardiopulmonary exercise testing in patients with transthyretin cardiac amyloidosis

  • EM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the prognostic value of cardiopulmonary testing (CPET) in a cohort of patients with transthyretin cardiac amyloidosis (ATTR-CA). ATTR-CA is associated with a progressive reduction in functional capacity. The prognostic role of CPET parameters and in particular of normalized peak VO2 (%ppVO2) remains to be thoroughly evaluated. In this study, 75 patients with ATTR-CA underwent cardiological evaluation and CPET in a National Referral Center for cardiac amyloidosis (Careggi University Hospital, Florence). Fifty-seven patients (76%) had wild-type ATTR. Median age was 80 (75–83) years, 68 patients (91%) were men. Peak oxygen consumption (14.1 ± 4.1 ml/kg/min) and %ppVO2 (68.4 ± 18.8%) were blunted. Twenty-seven (36%) patients had an abnormal pressure response to exercise. After a median follow-up of 25 (12–31) months, the composite outcome of death or heart failure hospitalization was registered in 19 (25.3%) patients. At univariate analysis %ppVO2 was a stronger predictor for the composite outcome than peak VO2. %ppVO2 and NT-proBNP remained associated with the composite outcome at multivariate analysis. The optimal predictive threshold for %ppVO2 was 62% (sensitivity: 71%; specificity: 68%; AUC: 0.77, CI 0.65–0.88). Patients with %ppVO2 ≤ 62%and NT-proBNP > 3000 pg had a worse prognosis with 1- and 2-year survival of 69 ± 9% and 50 ± 10%, respectively. CPET is a safe and useful prognostic tool in patients with ATTR-CA. CPET may help to identify patients with advanced disease that may benefit from targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HF:

Heart failure

AT:

Anaerobic threshold

ATTR-CA:

Transthyretin cardiac amyloidosis

ATTRwt:

Wild-type transthyretin cardiac amyloidosis

ATTRv:

Hereditary transthyretin cardiac amyloidosis

CPET:

Cardiopulmonary exercise testing

HFpEF:

HF with preserved ejection fraction

LV:

Left ventricle/ventricular

%ppVO2 :

Percentage of predicted peak VO2

SV:

Stroke volume

VO2 :

Oxygen uptake

VCO2 :

Carbon dioxide production

VE/VCO2 slope:

Minute ventilation/carbon dioxide production

References

  1. González-López E, Gallego-Delgado M, Guzzo-Merello G et al (2015) Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 36(38):2585–2594. https://doi.org/10.1093/eurheartj/ehv338

    Article  CAS  PubMed  Google Scholar 

  2. Chacko L, Martone R, Bandera F et al (2020) Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. Eur Heart J 41(14):1439–1447. https://doi.org/10.1093/eurheartj/ehz905

    Article  PubMed  Google Scholar 

  3. Grogan M, Scott CG, Kyle RA et al (2016) Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 68(10):1014–1020. https://doi.org/10.1016/j.jacc.2016.06.033

    Article  PubMed  Google Scholar 

  4. Gillmore JD, Damy T, Fontana M et al (2018) A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 39(30):2799–2806. https://doi.org/10.1093/eurheartj/ehx589

    Article  CAS  PubMed  Google Scholar 

  5. Cappelli F, Martone R, Gabriele M et al (2020) Biomarkers and prediction of prognosis in transthyretin-related cardiac amyloidosis: direct comparison of two staging systems. Can J Cardiol 36(3):424–431. https://doi.org/10.1016/j.cjca.2019.12.020

    Article  PubMed  Google Scholar 

  6. Hein S, Aus Dem Siepen F, Bauer R, Katus HA, Kristen AV (2018) Peak V’O2 is an independent predictor of survival in patients with cardiac amyloidosis. Amyloid 25(3):167–173. https://doi.org/10.1080/13506129.2018.1496077

    Article  PubMed  Google Scholar 

  7. Nicol M, Deney A, Lairez O et al (2021) Prognostic value of cardiopulmonary exercise testing in cardiac amyloidosis. Eur J Heart Fail 23(2):231–239. https://doi.org/10.1002/ejhf.2016

    Article  CAS  PubMed  Google Scholar 

  8. Dalia T, Acharya P, Chan WC et al (2021) Prognostic role of cardiopulmonary exercise testing in wild-type transthyretin amyloid cardiomyopathy patients treated with tafamidis. J Card Fail 27(11):1285–1289. https://doi.org/10.1016/j.cardfail.2021.06.022

    Article  PubMed  Google Scholar 

  9. Corrà U, Agostoni PG, Anker SD et al (2018) Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the committee on exercise physiology and training of the heart failure association of the European Society of Cardiology: cardiopulmonary exercise testing and prognosis in HF. Eur J Heart Fail 20(1):3–15. https://doi.org/10.1002/ejhf.979

    Article  PubMed  Google Scholar 

  10. Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612

    Article  CAS  PubMed  Google Scholar 

  11. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  12. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method Circulation 55(4):613–618. https://doi.org/10.1161/01.CIR.55.4.613

    Article  CAS  PubMed  Google Scholar 

  13. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29(4):277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  14. Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing1–3. Am Rev Respir Dis 129:S49–S55. https://doi.org/10.1164/arrd.1984.129.2P2.S49

    Article  CAS  PubMed  Google Scholar 

  15. Guazzi M, Adams V, Conraads V et al (2012) Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126(18):2261–2274. https://doi.org/10.1161/CIR.0b013e31826fb946

    Article  PubMed  PubMed Central  Google Scholar 

  16. Malhotra R, Bakken K, D’Elia E, Lewis GD (2016) Cardiopulmonary exercise testing in heart failure. JACC Heart Fail 4(8):607–616. https://doi.org/10.1016/j.jchf.2016.03.022

    Article  PubMed  Google Scholar 

  17. Corrà U, Giordano A, Bosimini E et al (2002) Oscillatory ventilation during exercise in patients with chronic heart failure. Chest 121(5):1572–1580. https://doi.org/10.1378/chest.121.5.1572

    Article  PubMed  Google Scholar 

  18. Balady GJ, Arena R, Sietsema K et al (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the american heart association. Circulation 122(2):191–225. https://doi.org/10.1161/CIR.0b013e3181e52e69

    Article  PubMed  Google Scholar 

  19. Bhuiyan T, Helmke S, Patel AR et al (2011) Pressure-volume relationships in patients with transthyretin (ATTR) cardiac amyloidosis secondary to v122i mutations and wild-type transthyretin: Transthyretin Cardiac Amyloid Study (TRACS). Circ Heart Fail 4(2):121–128. https://doi.org/10.1161/CIRCHEARTFAILURE.109.910455

    Article  CAS  PubMed  Google Scholar 

  20. Arena R, Myers J, Abella J et al (2009) Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. Circ Heart Fail 2(2):113–120. https://doi.org/10.1161/CIRCHEARTFAILURE.108.834168

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stelken AM, Younis LT, Jennison SH et al (1996) Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol 27(2):345–352. https://doi.org/10.1016/0735-1097(95)00464-5

    Article  CAS  PubMed  Google Scholar 

  22. Osada N, Chaitman BR, Miller LW et al (1998) Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol 31(3):577–582. https://doi.org/10.1016/S0735-1097(97)00533-0

    Article  CAS  PubMed  Google Scholar 

  23. Mehra M, Kobashigawa J, Starling R et al (2006) Listing criteria for heart transplantation: international society for heart and lung transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant 25(9):1024–1042. https://doi.org/10.1016/j.healun.2006.06.008

    Article  PubMed  Google Scholar 

  24. Shafiq A, Brawner CA, Aldred HA et al (2016) Prognostic value of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. The Henry Ford HospITal CardioPulmonary EXercise Testing (FIT-CPX) project. Am Heart J174:167–172. https://doi.org/10.1016/j.ahj.2015.12.020

    Article  Google Scholar 

  25. Griffin JM, Rosenthal JL, Grodin JL, Maurer MS, Grogan M, Cheng RK (2021) ATTR amyloidosis: current and emerging management strategies. JACC CardioOncology 3(4):488–505. https://doi.org/10.1016/j.jaccao.2021.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maurer MS, Schwartz JH, Gundapaneni B et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016. https://doi.org/10.1056/NEJMoa1805689

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

MVS and AA: methodology, investigation, data curation and formal analysis, writing—original draft. SB, CF and MZ: conceptualization, methodology, investigation, data curation and formal analysis, writing—original draft. SB and CM: data curation and formal analysis, writing—original draft. CDM, NM, IO: writing—review and editing. AT, LG and CB: resources and data curation. FF, FC and FP: conceptualization, methodology, writing—review and editing, supervision.

Corresponding author

Correspondence to Mattia Zampieri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Relationship with industries

The authors declare that no relationship with the industry exists for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverii, M.V., Argirò, A., Baldasseroni, S. et al. Prognostic value of cardiopulmonary exercise testing in patients with transthyretin cardiac amyloidosis. Intern Emerg Med 18, 585–593 (2023). https://doi.org/10.1007/s11739-022-03125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-022-03125-3

Keywords

Navigation