Skip to main content
Log in

Echocardiographic predictors of mortality in intermediate-risk pulmonary embolism

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Data regarding further risk stratification of intermediate-risk pulmonary embolism (IR-PE) are scanty. Whether transthoracic echocardiography may be helpful in further risk assessment of death in such population has still to be proven. Two-hundred fifty-four consecutive patients (51.6% females, age 63.7 ± 17.3 years) with IR-PE admitted to a tertiary regional referral center were enrolled. Patients underwent a complete transthoracic echocardiography within 36 h from hospital admission, on top of clinical assessment, physical examination, computer tomography pulmonary angiography (CTPA), and serum measurement of Troponin I (TnI) levels. The occurrence of 90 day mortality was chosen as primary outcome measure. When compared to survivors, non-surviving IR-PE patients had smaller left-ventricular end-diastolic volumes (39.8 ± 20.9 vs 49.4 ± 19.9 ml/m2, p = 0.006) with reduced stroke volume index (SVi) (24.7 ± 10.9 vs 30.9 ± 12.6 ml/m2, p: 0.004) and time–velocity integral at left-ventricular outflow tract (VTILVOT) (0.17 ± 0.03 vs 0.20 ± 0.04 m, p = 0.0001), whereas no differences were recorded regarding right heart parameters. Cox regression analysis revealed that right atrial enlargement (RAE) (HR 3.432, 5–95% CI 1.193–9.876, p: 0.022), the ratio between tricuspid annulus plane excursion and pulmonary arterial systolic pressure (TAPSE/PASp) (HR 4.833, 5–95% 1.230–18.986, p = 0.024), as well as SVi (HR 11.199, 5–95% CI 2.697–48.096, p = 0.001) and VTILVOT (HR 4.212, 5–95% CI 1.384–12.820, p = 0.011) were powerful independent predictors of mortality. Neither CTPA RV/LV nor TnI resulted associated with impaired survival. In intermediate-risk pulmonary embolism, RAE, TAPSE/PASp ratio, SVi, and VTILVOT predict independently prognosis to a greater extent than CTPA and TnI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, LF, upon reasonable request.

Code availability

Not applicable.

References

  1. Raskob GE, Angchaisuksiri P, Blanco AN et al (2014) Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol 34:2363–2371. https://doi.org/10.1111/jth.12698

    Article  CAS  PubMed  Google Scholar 

  2. Oger E (2000) Incidence of venous thromboembolism: a community-based study in Western France. EPI-GETBP Study Group. Groupe d’etude de la thrombose de bretagne occidentale. Thromb Haemost 83:657–660

    Article  CAS  Google Scholar 

  3. Bĕlohlávek J, Dytrych V, Linhart A (2013) Pulmonary embolism, part I: epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol 18:129–138

    PubMed  PubMed Central  Google Scholar 

  4. Stein PD, Henry JW (1995) Prevalence of acute pulmonary embolism among patients in a general hospital and at autopsy. Chest 108:978–981. https://doi.org/10.1378/chest.108.4.978

    Article  CAS  PubMed  Google Scholar 

  5. Konstantinides S, Geibel A, Heusel G et al (2002) Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med 347:1143–1150. https://doi.org/10.1056/NEJMoa021274

    Article  CAS  PubMed  Google Scholar 

  6. Kline JA, Nordenholz KE, Courtney DM et al (2014) Treatment of submassive pulmonary embolism with tenecteplase or placebo: cardiopulmonary outcomes at 3 months: multicenter double-blind, placebo-controlled randomized trial. J Thromb Haemost 12:459–468. https://doi.org/10.1111/jth.12521

    Article  CAS  PubMed  Google Scholar 

  7. Meyer G, Vicaut E, Danays T et al (2014) Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 370:1402–1411. https://doi.org/10.1056/NEJMoa1302097

    Article  CAS  PubMed  Google Scholar 

  8. Hao Q, Dong BR, Yue J et al (2018) Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004437.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Konstantinides SV, Meyer G (2019) The 2019 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 40:3453–3455. https://doi.org/10.1093/eurheartj/ehz726

    Article  PubMed  Google Scholar 

  10. Ferrara F, Gargani L, Ostenfeld E et al (2017) Imaging the right heart pulmonary circulation unit: insights from advanced ultrasound techniques. Echocardiography 34:1216–1231. https://doi.org/10.1111/echo.13594

    Article  PubMed  Google Scholar 

  11. Giri J, Sista AK, Weinberg I et al (2019) Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the American heart association. Circulation 140:e774–e801. https://doi.org/10.1161/CIR.0000000000000707

    Article  PubMed  Google Scholar 

  12. Coutance G, Cauderlier E, Ehtisham J et al (2011) The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care. https://doi.org/10.1186/cc10119

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keller K, Coldewey M, Geyer M et al (2016) Shock index for outcome and risk stratification in acute pulmonary embolism✩. Artery Res 15:30. https://doi.org/10.1016/j.artres.2016.05.002

    Article  Google Scholar 

  14. Adams DM, Stevens SM, Woller SC et al (2013) Adherence to PIOPED II investigators’ recommendations for computed tomography pulmonary angiography. Am J Med 126:36–42. https://doi.org/10.1016/j.amjmed.2012.05.028

    Article  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  16. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol 165:710–718. https://doi.org/10.1093/aje/kwk052

    Article  PubMed  Google Scholar 

  17. Goldhaber SZ, Come PC, Lee RT et al (1993) Alteplase versus heparin in acute pulmonary embolism: randomised trial assessing right-ventricular function and pulmonary perfusion. Lancet 341:507–511. https://doi.org/10.1016/0140-6736(93)90274-K

    Article  CAS  PubMed  Google Scholar 

  18. Grifoni S, Vanni S, Magazzini S et al (2006) Association of persistent right ventricular dysfunction at hospital discharge after acute pulmonary embolism with recurrent thromboembolic events. Arch Intern Med 166:2151. https://doi.org/10.1001/archinte.166.19.2151

    Article  PubMed  Google Scholar 

  19. Fasullo S, Scalzo S, Maringhini G et al (2011) Six-month echocardiographic study in patients with submassive pulmonary embolism and right ventricle dysfunction: comparison of thrombolysis with heparin. Am J Med Sci 341:33–39. https://doi.org/10.1097/MAJ.0b013e3181f1fc3e

    Article  PubMed  Google Scholar 

  20. Mitchell C, Rahko PS, Blauwet LA et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the american society of echocardiography. J Am Soc Echocardiogr 32:1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  21. Chow V, Ng ACC, Chung T et al (2013) Right atrial to left atrial area ratio on early echocardiography predicts long-term survival after acute pulmonary embolism. Cardiovasc Ultrasound 11:17. https://doi.org/10.1186/1476-7120-11-17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lobo JL, García Fuertes JA, Rivas A et al (2012) Right atrial enlargement and prognosis in the hemodinamically stable pulmonary embolism. Eur Respir J 40:2827

    Google Scholar 

  23. Tello K, Wan J, Dalmer A et al (2019) Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.119.009047

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guazzi M (2018) Use of TAPSE/PASP ratio in pulmonary arterial hypertension: an easy shortcut in a congested road. Int J Cardiol 266:242–244. https://doi.org/10.1016/j.ijcard.2018.04.053

    Article  PubMed  Google Scholar 

  25. Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69:236–243. https://doi.org/10.1016/j.jacc.2016.10.047

    Article  PubMed  Google Scholar 

  26. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448. https://doi.org/10.1038/nature05602

    Article  CAS  PubMed  Google Scholar 

  27. Walker CM, Chung JH, Reddy GP (2012) Septal bounce J Thorac Imaging. Jan;27(1):W1. https://doi.org/10.1097/RTI.0b013e31823fdfbd PMID: 22189246

  28. Lyhne MD, Kabrhel C, Giordano N et al (2021) The echocardiographic ratio tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure predicts short-term adverse outcomes in acute pulmonary embolism. Eur Hear J - Cardiovasc Imaging 22:285–294. https://doi.org/10.1093/ehjci/jeaa243

    Article  Google Scholar 

  29. Blanco P (2020) Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J 12:21. https://doi.org/10.1186/s13089-020-00170-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Trip P, Rain S, Handoko ML et al (2015) Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 45:1603–1612. https://doi.org/10.1183/09031936.00156714

    Article  PubMed  Google Scholar 

  31. Hobohm L, Hellenkamp K, Hasenfuß G et al (2016) Comparison of risk assessment strategies for not-high-risk pulmonary embolism. Eur Respir J 47:1170–1178. https://doi.org/10.1183/13993003.01605-2015

    Article  CAS  PubMed  Google Scholar 

  32. Fernández C, Bova C, Sanchez O et al (2015) Validation of a model for identification of patients at intermediate to high risk for complications associated with acute symptomatic pulmonary embolism. Chest 148:211–218. https://doi.org/10.1378/chest.14-2551

    Article  PubMed  Google Scholar 

  33. ten Wolde M, Söhne M, Quak E et al (2004) Prognostic value of echocardiographically assessed right ventricular dysfunction in patients with pulmonary embolism. Arch Intern Med 164:1685–1689. https://doi.org/10.1001/archinte.164.15.1685

    Article  PubMed  Google Scholar 

  34. Frémont B, Pacouret G, Jacobi D et al (2008) Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest 133:358–362. https://doi.org/10.1378/chest.07-1231

    Article  PubMed  Google Scholar 

  35. Steering Committee 2012. Single-bolus tenecteplase plus heparin compared with heparin alone for normotensive patients with acute pulmonary embolism who have evidence of right ventricular dysfunction and myocardial injury: rationale and design of the Pulmonary Embolism Thrombolysis (PEITHO) trial. Am Heart J. Jan;163(1):33-38.e1. https://doi.org/10.1016/j.ahj.2011.10.003 PMID: 22172434

    Article  Google Scholar 

  36. Prosperi-Porta G, Solverson K, Fine N et al (2020) Echocardiography-derived stroke volume index is associated with adverse in-hospital outcomes in intermediate-risk acute pulmonary embolism: a retrospective cohort study. Chest. https://doi.org/10.1016/j.chest.2020.02.066

    Article  PubMed  Google Scholar 

  37. Kurnicka K, Lichodziejewska B, Goliszek S et al (2016) Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J Am Soc Echocardiogr 29:907–913. https://doi.org/10.1016/j.echo.2016.05.016

    Article  PubMed  Google Scholar 

  38. Sanchez O, Trinquart L, Colombet I et al (2008) Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review. Eur Heart J 29:1569–1577. https://doi.org/10.1093/eurheartj/ehn208

    Article  PubMed  Google Scholar 

  39. Van Wolferen SA, Van De Veerdonk MC, Mauritz GJ et al (2011) Clinically significant change in stroke volume in pulmonary hypertension. Chest 139:1003–1009. https://doi.org/10.1378/chest.10-1066

    Article  PubMed  Google Scholar 

  40. Van De Veerdonk MC, Kind T, Marcus JT et al (2011) Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 58:2511–2519. https://doi.org/10.1016/j.jacc.2011.06.068

    Article  PubMed  Google Scholar 

  41. Barco S, Russo M, Vicaut E et al (2019) Incomplete echocardiographic recovery at 6 months predicts long-term sequelae after intermediate-risk pulmonary embolism. A post-hoc analysis of the pulmonary embolism Thrombolysis (PEITHO) trial. Clin Res Cardiol 108:772–778. https://doi.org/10.1007/s00392-018-1405-1

    Article  PubMed  Google Scholar 

  42. Romiti GF, Recchia F, Zito A et al (2020) Sex and gender-related issues in heart failure. Heart Fail Clin 16:121–130. https://doi.org/10.1016/j.hfc.2019.08.005

    Article  PubMed  Google Scholar 

  43. Buratti L, Rocchi C, Totaro V et al (2021) Sex-related differences in polygraphic parameters in a population of patients with obstructive sleep apnea syndrome. CNS Neurol Disord - Drug Targets. https://doi.org/10.2174/1871527320666211022104140

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Prof. Maurizio Galderisi, whose passion and commitment to research have been inspiring young fellows, who had the privilege of being in contact with him.

Funding

Dr. D’Agostino’s contribution was supported by the Italian Ministry of Health under grant: GR-2016-02364727 “Choosing Wisely” in Pulmonary Arterial Hypertension: redefining current screening, follow-up, and prognostic procedures in patients with Pulmonary Arterial Hypertension.

Author information

Authors and Affiliations

Authors

Contributions

LF, AMM, VZ, and SM made a substantial contribution to the conception, design of the work, to the analysis, and interpretation of the data, drafted the work, and revised it; FR, LG, EG, VG, and ADG made a substantial contribution to the conception of the work, to the interpretation of the data, and revised the work; NC and TG made a substantial contribution to the analysis and interpretation of the data, drafted the work, and revised it; GM, AC, and AS made a substantial contribution to the conception, design, supervision, and revision of the work. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Lorenzo Falsetti.

Ethics declarations

Conflict of interests

The author(s) declare that they have no conflict of interest.

Ethics approval

The study was approved by the local Ethical Committee (Comitato Etico Regione Marche, Protocol n. 217/2020).

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitato Etico Regione Marche, Protocol n. 217/2020) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

At the hospital admission, every patient or caregiver was required to sign a consent to participate to observational, non-interventional studies.

Consent for publication

All authors had full access to the data, reviewed the final version of the paper, and gave the consent to publish the paper in the current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falsetti, L., Marra, A.M., Zaccone, V. et al. Echocardiographic predictors of mortality in intermediate-risk pulmonary embolism. Intern Emerg Med 17, 1287–1299 (2022). https://doi.org/10.1007/s11739-021-02910-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-021-02910-w

Keywords

Navigation