Skip to main content

Advertisement

Log in

Power of screening tests for colorectal cancer enhanced by high levels of M2-PK in addition to FOBT

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a multistep process that involves adenoma–carcinoma sequence. CRC can be prevented by routine screening, which can detect precancerous lesions. The aim of this study is to clarify whether faecal occult blood test (i-FOBT), tumor M2 pyruvate kinase (t-M2-PK), and endocannabinoid system molecules (cannabinoid receptors type 1—CB1, type 2—CB2, and fatty acid amide hydrolase—FAAH) might represent better diagnostic tools, alone or in combination, for an early diagnosis of CRC. An immunochemical FOB test (i-FOBT) and quantitative ELISA stool test for t-M2-PK were performed in 127 consecutive patients during a 12 month period. Endocannabinoid system molecules and t-M2-PK expression were detected by immunostaining in healthy tissues and normal mucosa surrounding adenomatous and cancerous colon lesions. i-FOBT and t-M2-PK combination leads to a better diagnostic accuracy for pre-neoplastic and neoplastic colon lesions. T-M2-PK quantification in stool samples and in biopsy samples (immunostaining) correlates with tumourigenesis stages. CB1 and CB2 are well expressed in healthy tissues, and their expression decreases in the presence of advanced stages of carcinogenesis and disappears in CRC. FAAH signal is well expressed in normal mucosa and low-risk adenoma, and increased in high-risk adenoma and carcinoma adjacent tissues. This study shows that high levels of t-M2-PK in addition to FOBT enhance the power of a CRC screening test. Endocannabinoid system molecule expression correlates with colon carcinogenesis stages. Developing future faecal tests for their quantification must be undertaken to obtain a more accurate early non-invasive diagnosis for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Center MM, Ward E, Thun MJ (2009) Cancer occurrence. Methods Mol Biol 471:3–29

    Article  PubMed  Google Scholar 

  2. Molfino A, Formiconi A, Leone PM, Fanelli RF, Muscaritoli M (2014) Towards improved awareness and earlier diagnosis of early onset colorectal neoplasms. Intern Emerg Med 9(6):615–616

    Article  PubMed  Google Scholar 

  3. Di Gregorio C, Bonetti LR, de Gaetani C, Pedroni M, Kaleci S, Ponz de Leon M (2014) Clinical outcome of low- and high-risk malignant colorectal polyps: results of a population-based study and meta-analysis of the available literature. Intern Emerg Med 9(2):151–160. doi:10.1007/s11739-012-0772-2

    Article  PubMed  Google Scholar 

  4. Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR (2012) Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 143:844–857

    Article  PubMed  Google Scholar 

  5. Ruco A, Stock D, Hilsden RJ et al (2015) Evaluation of a risk index for advanced proximal neoplasia of the colon. Gastrointest Endosc 81:1427–1432

    Article  PubMed  Google Scholar 

  6. Zavoral M, Suchanek S, Zavada F et al (2009) Colorectal cancer screening in Europe. World J Gastroenterol 15(47):5907–5915

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parente F, Marino M, De Vecchi N, Moretti R (2009) Lecco Cancer Screening Group. Faecal occult blood test-based screening programme with high compliance for colonoscopy has strong clinical impact on colorectal cancer. Br J Surg 96:533–540

    Article  CAS  PubMed  Google Scholar 

  8. Hu J, Locasale JW, Bielas JH et al (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol 31:522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eigenbrodt E, Glossmann H (1980) Glycolysis—one of the keys to cancer? Trends Pharmacol Sci 1:240–245

    Article  CAS  Google Scholar 

  10. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R (1992) Double role for pyruvate kinase type M2 in the expansion of phosphometabolitepools found in tumor cells. Crit Rev Oncog 3:91–115

    CAS  PubMed  Google Scholar 

  11. Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980

    Article  CAS  PubMed  Google Scholar 

  12. Ligresti A, Bisogno T, Matias I et al (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687

    Article  CAS  PubMed  Google Scholar 

  13. Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E (2002) Pyruvate kinasetype M2: a crossroad in the tumor metabolome. Br J Nutr 87(Suppl. 1):S23–S29

    Article  CAS  PubMed  Google Scholar 

  14. Netzker R, Greiner E, Eigenbrodt E, Noguchi T, Tanaka T, Brand K (1992) Cellcycle-associated expression of M2-type isozyme of pyruvate kinase in proliferating rat thymocytes. J Biol Chem 267:6421–6424

    CAS  PubMed  Google Scholar 

  15. Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important forcancer metabolism and tumor growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  16. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvatekinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186

    Article  CAS  PubMed  Google Scholar 

  17. Yang W, Xia Y, Ji H et al (2011) Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480:118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang W, Xia Y, Hawke D et al (2012) PKM2 phosphorylateshistone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives on carbohydrate metabolism in tumor cells. In: Beitner R (ed) Regulation of carbohydrate metabolism. CRC Press, Boca Raton Fl, pp 141–179

    Google Scholar 

  20. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R (1992) Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog 3(1–2):91–115

    CAS  PubMed  Google Scholar 

  21. Eigenbrodt E, Glossmann H (1980) Glycolysis- One of the keys to cancer. Trends Pharmacol Sci 1:240–245

    Article  CAS  Google Scholar 

  22. Hardt P, Mazurek S, Toepler M et al (2004) Faecal tumor M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br J Cancer 91:980–984

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vogel T, Driemel C, Hauser A et al (2005) Comparison of different stool tests for the detection of cancer of the colon. Dtsch Med Wochenschr 130(14):872–877

    Article  CAS  PubMed  Google Scholar 

  24. Shastri Y, Naumann M, Oremek G et al (2006) Prospective multicenter evaluation of fecal tumor pyruvate kinase type M2 (M2-PK) as a screening biomarker for colorectal neoplasia. Int J Cancer 119(11):2651–2656

    Article  CAS  PubMed  Google Scholar 

  25. Haug U, Rothenbacher D, Wente M, Seiler C, Stegmaier C, Brenner H (2007) Tumor M2-PK as a stool marker for colorectal cancer: comparative analysis in a large sample of unselected older adults vs colorectal cancer patients. Br J Cancer 96(9):1329–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1998) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    Google Scholar 

  27. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  CAS  PubMed  Google Scholar 

  28. Cravatt BF, Lichtman AH (2003) Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 7:469–475

    Article  CAS  PubMed  Google Scholar 

  29. Deutsch DG, Ueda N, Yamamoto S (2002) The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot Essent Fatty Acids 66:201–210

    Article  CAS  PubMed  Google Scholar 

  30. Izzo AA, Aviello G, Petrosino S et al (2008) Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Mol Med 86(1):89–98

    Article  CAS  Google Scholar 

  31. Dixon MF (2002) Gastrointestinal epithelial neoplasia: Vienna revisited. International consensus meetings in Padova and Vienna: the grading and classification of gastrointestinal epithelial neoplasia. Gut 51:130–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobin LH, Wittekind C (eds) (2002) International Union Against Cancer: TNM classification of malignant tumours, 6th edn. Wiley-Liss, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto

    Google Scholar 

  33. Bastide NM, Pierre FH, Corpet DE (2011) Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res 4:177–184

    Article  CAS  Google Scholar 

  34. Zhao R, Michor F (2013) Patterns of proliferative activity in the colonic crypt determine crypt stability and rates of somatic evolution. PLoS Comput Biol 9(6):e1003082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Potten CS, Kellett M, Roberts SA, Rew DA, Wilson GD (1992) Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut 33:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson TJ, Ponder BA, Wright NA (1985) Use of a mouse chimaeric model to study cell migration patterns in the small intestinal epithelium. Cell Tissue Kinet 18:333–344

    CAS  PubMed  Google Scholar 

  37. Board M, Humm S, Newsholme EA (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylicacid cycle in normal, neoplastic and suppressed cells. Biochem J 265:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parente F, Marino B, Ilardoc A et al (2012) A combination of faecal tests for the detection of colon cancer: a new strategy for an appropriate selection of referrals to colonoscopy? A prospective multicentre Italian study. Eur J Gastroenterol Hepatol 24(10):1145–1152

    Article  PubMed  Google Scholar 

  39. Bifulco M, Laezza C, Valenti M, Ligresti A, Portella G, Di Marzo V (2004) A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J 18:1606–1608

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Fiorini.

Ethics declarations

The protocol was approved by the ethics committee and received no external funding.

Conflict of interest

All authors declare no conflict of interest.

Statement of Human and animal rights

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccaro, C., Saracino, I.M., Fiorini, G. et al. Power of screening tests for colorectal cancer enhanced by high levels of M2-PK in addition to FOBT. Intern Emerg Med 12, 333–339 (2017). https://doi.org/10.1007/s11739-017-1610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-017-1610-3

Keywords

Navigation