Skip to main content

Advertisement

Log in

Physiological responses and antioxidant properties of spiny coriander (Eryngium foetidum L.) under shading and nitrogen fertilization

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of light and nitrogen fertilization on the fresh mass, essential oil contents, mineral contents, and antioxidant compounds in leaves of spiny coriander (Eryngium foetidum L.). Yield was influenced by luminosity and fertilization conditions, with a 37% increase in leaf fresh mass and higher levels of total phenolics, flavonoids, and antioxidant activity and production of essential oil in full sun conditions. Cultivation in 50% shading induced higher levels of chlorophyll b, carotenoids, and minerals (N, P, K, S, B, and Cu) in addition to lower dry mass content, which are desirable characteristics for fresh consumption. DPPH inhibition decreased with increasing nitrogen fertilization in 50% shading. Considering the productivity, essential oil, and antioxidants, open field cultivation provides the most appropriate conditions for the production of spiny coriander for food, functional supplements, and pharmaceuticals. Shading is recommended for production aimed at fresh markets due to the quality of the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings to this study are available within the article. All data may be shared upon request.

References

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Brunetti C, Fini A, Sebastiani F et al (2018) Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. Front Plant Sci 9:1–8. https://doi.org/10.3389/fpls.2018.01042

    Article  Google Scholar 

  • Campos RAS, Seabra Junior S, Gonçalves GG et al (2019) Changes in bioactive compounds in spiny coriander leaves in response to inflorescence pruning at different growth stages. Sci Hortic (amsterdam) 245:250–257. https://doi.org/10.1016/j.scienta.2018.10.033

    Article  CAS  Google Scholar 

  • Casey CA, Mangan FX, Herbert SJ, et al (2004) The effect of light intensity and nitrogen fertilization on plant growth and leaf quality of Ngo Gai (Eryngium foetidum L.) in Massachusetts. Acta Hortic 629:215–229. https://doi.org/10.17660/ActaHortic.2004.629.28

  • de Groot CC, Marcelis LFM, van den Boogaard R, Lambers H (2002) Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. Funct Plant Biol 29:1319–1328

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. https://doi.org/10.1146/annurev.pp.43.060192.003123

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science (80- ) 298:2149–2153

  • Forbes WM, Gallimore WA, Mansingh A et al (2014) Eryngial (trans-2-dodecenal), a bioactive compound from Eryngium foetidum: Its identification, chemical isolation, characterization and comparison with ivermectin in vitro. Parasitology 141:269–278. https://doi.org/10.1017/S003118201300156X

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plant Res 5:6697–6703. https://doi.org/10.5897/JMPR11.1404

    Article  CAS  Google Scholar 

  • Giannoulis KD, Kamvoukou CA, Gougoulias N, Wogiatzi E (2020) Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind Crops Prod 150:112392. https://doi.org/10.1016/j.indcrop.2020.112392

  • Gomes RF, da Silva JP, de Gusmão SAL, de Souza GT (2013) Production of Amazonian culantro grown under different cultivation densities and floral tassel pruning. Caatinga 26:9–14

    Google Scholar 

  • Gomes RF, Gonçalves VP, da Arruda R, S, Santos L da S, (2020) Multicategorical descriptors for creole genotypes of Amazon chicory (Eryngium foetidum). Hortic Bras 38:334–338

    Article  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, et al (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science (80- ) 307:433–436. https://doi.org/10.1126/science.1105833

  • Huang CJ, Wei G, Jie YC et al (2016) Effect of shade on plant traits, gas exchange and chlorophyll content in four ramie cultivars. Photosynthetica 54:390–395. https://doi.org/10.1007/s11099-016-0186-x

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Babula P, Jarošová M (2014) Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants. J Plant Physiol 171:260–268. https://doi.org/10.1016/j.jplph.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sharma S, Pathania V (2013) Effect of shading and plant density on growth, yield and oil composition of clary sage (Salvia sclarea L.) in north western Himalaya. J Essent Oil Res 25:23–32. https://doi.org/10.1080/10412905.2012.742467

    Article  CAS  Google Scholar 

  • Leitão D, do STC, Siqueira FC, de Sousa SHB, et al (2020) Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Int J Food Prop 23:1452–1464. https://doi.org/10.1080/10942912.2020.1811311

    Article  CAS  Google Scholar 

  • Lepcha TT, Upadhyay S, Manivannan S, et al (2018) Proximate and nutritional analysis of Culantro (Eryngium foetidum). J Pharmacogn Phytochem 1

  • Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações, 2nd edn. Potafos, Piracicaba-SP

  • Marouelli WA (2008) Tensiometer for the control of irrigation in vegetables. Embrapa Hortaliças Circ Técnica

  • Milenković L, Stanojević J, Cvetković D et al (2019) New technology in basil production with high essential oil yield and quality. Ind Crops Prod 140:111718

    Article  Google Scholar 

  • Moniruzzaman et al (2009) Effects of Shade and Nitrogen Levels on Quality. Bangladesh J Agric Res 34:205–213

    Article  Google Scholar 

  • Montoya-García CO, Volke-Haller VH, Trinidad-Santos A, Villanueva-Verduzco C (2018) Change in the contents of fatty acids and antioxidant capacity of purslane in relation to fertilization. Sci Hortic (amsterdam) 234:152–159. https://doi.org/10.1016/j.scienta.2018.02.043

    Article  CAS  Google Scholar 

  • Moura HFS, de Souza Dias F, Souza e Souza LB, et al (2021) Evaluation of multielement/proximate composition and bioactive phenolics contents of unconventional edible plants from Brazil using multivariate analysis techniques. Food Chem 363:129995. https://doi.org/10.1016/j.foodchem.2021.129995

  • Mozumder S, Moniruzzaman M, Sarker P (2008) Effect of Nitrogen Rate and Application Interval on Yield and Profitability of Bilatidhonia. J Agric Rural Dev 6:63–68. https://doi.org/10.3329/jard.v6i1.1658

    Article  Google Scholar 

  • Oliveira AP, Silva VRF, Santos CS et al (2002) Produção de coentro cultivado com esterco bovino e adubação mineral. Hortic Bras 20:477–479. https://doi.org/10.1590/s0102-05362002000300016

    Article  Google Scholar 

  • Paul JHA, Seaforth CE, Tikasingh T (2011) Eryngium foetidum L.: A review. Fitoterapia 82:302–308. https://doi.org/10.1016/j.fitote.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  • Pech R, Volná A, Hunt L, et al (2022) Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 23:. https://doi.org/10.3390/ijms23126533

  • Pérez DV, Silva J, Mattos R, et al (2013) Brazilian Soil Classification System 3rd revised and expanded edition, Third. EMBRAPA, Brasília (DF)

  • Ping W, Zushang S, Wei Y et al (2012) Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm Crop 3:99–120. https://doi.org/10.2174/2210290601203010099

    Article  Google Scholar 

  • Popova M, Bankova V, Butovska D et al (2004) Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem Anal 15:235–340. https://doi.org/10.1002/pca.777

    Article  CAS  PubMed  Google Scholar 

  • Quynh CTT, Kubota K (2012) Aroma constituents and enzyme activities of Japanese long coriander leaves (Culantro, Eryngium foetidum L.). Food Sci Technol Res 18:287–294

    Article  CAS  Google Scholar 

  • Rezai S, Etemadi N, Nikbakht A, et al (2018) Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content inSage (Salvia officinalis L.). korean J Hortic Sci 36:46–57. https://doi.org/10.12972/kjhst.20180006

  • Rodrigues TLM, Castro GLS, Viana RG, et al (2020) Physiological performance and chemical compositions of the Eryngium foetidum L. (Apiaceae) essential oil cultivated with different fertilizer sources. Nat Prod Res 0:1–5. https://doi.org/10.1080/14786419.2020.1795653

  • Rojas-silva P, Graziose R, Vesely B, et al (2013) Leishmanicidal activity of a daucane sesquiterpene isolated from Eryngium foetidum. 1–4. https://doi.org/10.3109/13880209.2013.837077

  • Sarijeva G, Knapp M, Lichtenthaler HK (2007) Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol 164:950–955. https://doi.org/10.1016/j.jplph.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

    Article  Google Scholar 

  • Singh BK, Ramakrishna Y, Ngachan SV (2014) Spiny coriander (Eryngium foetidum L.): A commonly used, neglected spicing-culinary herb of Mizoram. India Genet Resour Crop Evol 61:1085–1090. https://doi.org/10.1007/s10722-014-0130-5

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in enzymology. Elsevier, pp 152–178

  • Skubij N, Dzida K (2019) Essential oil composition of summer savory (Satureja hortensis L.) cv. Saturn depending on nitrogen nutrition and plant development phases in raw material cultivated for industrial use. Ind Crops Prod 135:260–270. https://doi.org/10.1016/j.indcrop.2019.04.057

    Article  CAS  Google Scholar 

  • Soto-Bravo F, Rodríguez-Ocampo GA (2021) Crecimiento, evapotranspiración y uso de nutrientes en cultivo hidropónico de eryngium foetidum, en dos diferentes ambientes y niveles de nutrición. Agron Costarric 45:19–40. https://doi.org/10.15517/rac.v45i1.45674

  • Souza LG, Ferreira RL, Araújo Neto S et al (2020) Chicory yield influenced by seedling quality and growing environment. Hortic Bras 38:224–229. https://doi.org/10.1126/science.116.3001.19

    Article  CAS  Google Scholar 

  • Stefanelli D, Winkler S, Jones R (2011) Reduced nitrogen availability during growth improves quality in red oak lettuce leaves by minimizing nitrate content, and increasing antioxidant capacity and leaf mineral content. Agric Sci 02:477–486. https://doi.org/10.4236/as.2011.24061

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2017) Fisiologia e desenvolvimento vegetal. Artmed Editora

  • Thakur M, Bhatt V, Kumar R (2019) Effect of shade level and mulch type on growth, yield and essential oil composition of damask rose (Rosa damascena Mill.) under mid hill conditions of Western Himalayas. PLoS One 14:e0214672. https://doi.org/10.1371/journal.pone.0214672

  • Thomas P, Essien E, Ntuk S, Choudhary M (2017) Eryngium foetidum L. Essential Oils: Chemical Composition and Antioxidant Capacity. Medicines 4:24. https://doi.org/10.3390/medicines4020024

  • Wang Y, Gao S, He X et al (2020) Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020:1–18. https://doi.org/10.7717/peerj.8354

    Article  Google Scholar 

  • Youkai X, Hongmao L, Xiangsheng D, Chunfen X (2005) Study on nutritional contents of Eryngium foetidum cultivated under different intensities of sunlight. Chinese J Trop Crop 26:75–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RASC: conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing. SSJ: conceptualization, methodology, investigation, writing—original draft, writing—review and editing. Supervision. GGG: methodology, formal analysis, investigation, writing—original draft, writing—review and editing. FSP: methodology, formal analysis, investigation, writing—original draft, writing—review and editing. ACM: methodology, formal analysis, investigation, writing—original draft, writing—review and editing. LCM: conceptualization, methodology, investigation, writing—original draft. Supervision. GPPL: conceptualization, methodology, investigation, writing—original draft, writing—review and editing, supervision.

Corresponding author

Correspondence to Renê A. S. Campos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by C. L. Cespedes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, R.A.S., Seabra Júnior, S., Gonçalves, G.G. et al. Physiological responses and antioxidant properties of spiny coriander (Eryngium foetidum L.) under shading and nitrogen fertilization. Acta Physiol Plant 45, 111 (2023). https://doi.org/10.1007/s11738-023-03593-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03593-w

Keywords

Navigation