Skip to main content
Log in

Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

High level of salinity present in the soil severely affects plant growth and metabolism, eventually reduces crop productivity. In the present study, we have made an effort to obtain detailed insight on the effect of various levels of salinity on various physiological, biochemical, genetic, and phytochemical parameters of Andrographis paniculata genotype, CIM-Megha, in an attempt towards development of a salt-tolerant variety. The results showed that maximum seed germination efficiency was observed at 100 mM among the various salt concentrations. Moreover, with the increase in salt concentration, the overall growth of the plant was stunted. High salinity had a negative effect on photosynthetic pigments, free cysteine content, non-protein thiol content, and nitrate reductase activity. However, proline accumulation and phenol content were found to increase with the increasing salt concentration. The results from the study demonstrated that activities of CAT and APX antioxidant enzymes increased with the applied salt stress. The accumulation of reactive oxygen species in response to salinity is the most important DNA-damaging factor causing a decrease in the genomic template stability of the plant. Quantification of important bioactive constituents (andrographolide, neo-andrographolide, and 14-DDA) was done through HPLC, and the results showed high variability in constituents. In summary, Andrographis paniculata could be grown at large scale in saline areas having up to 100 mM salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acemi A, Duman Y, Karakuş YY, Kompe YO, Ozen F (2017) Analysis of plant growth and biochemical parameters in Amsonia orientalis after in vitro salt stress. Hortic Environ Biotechnol 58:231–239

    Article  CAS  Google Scholar 

  • Akbarsha MA, Murugaian P (2000) Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymal spermatozoa. Phytother Res 14:432–435

    Article  CAS  PubMed  Google Scholar 

  • Akowuah A, Zhari I, Mariam A (2008) Analysis of urinary andrographolides and antioxidant status after oral administration of Andrographis paniculata leaf extract in rats. Food Chem Toxicol 46:3616–3620

    Article  CAS  PubMed  Google Scholar 

  • American Herbal Products Association (AHPA) (2004) Andrographis paniculata. In: McGuffin M (ed) Herbs of commerce. American Herbal Products Association, USA, p 13

    Google Scholar 

  • Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz EE, Sabry RM, Ahmed SS (2013) Plant growth and essential oil production of Sage (Salvia officinalis L.) and Curly-Leafed Parsley (Petroselinum crispum ssp. crispum L.) cultivated under salt stress conditions. World Appl Sci J 28:785–796

    Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2002) Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Can J Bot 80:297–304

    Article  CAS  Google Scholar 

  • Basyuni M, Baba S, Inafuku M, Iwasaki H, Kinjo K, Oku H (2009) Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J Plant Physiol 166(16):1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldreman RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Behnke K, Ghirardo A, Janz D, Kanawati B, Esperschütz J, Zimmer I, Schmitt-Kopplin P, Niinemets Ü, Polle A, Schnitzler JP, Rosenkranz M (2013) Isoprene function in two contrasting poplars under salt and sunflecks. Tree Physiol 33:562–578

    Article  CAS  PubMed  Google Scholar 

  • Bourgou S, Bettaieb I, Saidani M, Marzouk B (2010) Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agric Food Chem 58:12399–12406

    Article  CAS  PubMed  Google Scholar 

  • Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 14(5):333–338

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gu W, Duan JA, Su SL, Shao J, Geng C (2014) Study on physiological characteristics and effects of salt stress in Andrographis paniculata. J Chinese Med Mat 37(8):1322–1327

    CAS  Google Scholar 

  • Cordazzo CV (1999) Effects of salinity on seed germination, seedling growth and survival of Spartina Ciliata Breng. Acta Bot Bras 13(3):317–322

    Article  Google Scholar 

  • Correia S, Matos M, Ferreira V, Martins N, Gonçalves S, Romano A, Pinto-Carnide O (2014) Molecular instability induced by aluminum stress in Plantago species. Mutat Res Genet Toxicol Environ Mutagen 770:105–111

    Article  CAS  PubMed  Google Scholar 

  • Dai P, Xiong ZT, Hung Y, Li MJ (2006) Cadmium induced changes in pigments total phenolic and phenylalanine ammonia liase activity in fronds in Azolla imbricate. Environ Toxicol 21(5):505–513

    Article  CAS  PubMed  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50(272):1096–1121

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • FAO (2008) Land resources, management, planning and use. http://www.fao.org/ag/agl/agll/spush

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg A, Agrawal L, Misra RC, Sharma S, Ghosh S (2015) Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics 16:659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genisel M, Erdal S, Kizilkaya M (2015) The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul 75:187–197

    Article  CAS  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:plw055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghirardo A, Gutknecht J, Zimmer I, Brüggemann N, Schnitzler JP, Beerling D (2011) Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants. PLoS ONE 6(2):e17393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Yadava JNS, Tandon JS (1993) Antisecretory (antidiarrhoeal) activity of Indian medicinal plants against Escherichia coli enterotoxin induced secretion in rabbit and guinea pig ileal loop models. Int J Pharmacogn 31(3):198–204

    Article  Google Scholar 

  • Hageman RH, Hucklesby DP (1971) Nitrate reductase from higher plants. In: San Pietro A (ed) Methods in enzymology. Academic Press, New York, pp 491–503

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer B, Yaniv Z, Ravina I (2002) Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Ind Crop Prod 15:163–167

    Article  CAS  Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE 8(4):e62085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indian Drug Manufacturer’s Association (IDMA) (2002) Andrographis paniculata. Indian herbal pharmacopoeia. Indian Drug Manufacturer’s Association, Mumbai, pp 57–69

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Article  Google Scholar 

  • Katiyar S, Dubey RS (1992) Influence of NaCl salinity on behaviours of nitrate reductase and nitrite reductase in rice seedlings differing in salt tolerance. J Agron Crop Sci 169:289–297

    Article  CAS  Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:1–7

    Article  Google Scholar 

  • Kumar R, Srivastava M (2018) Study of growth and antioxidant enzymes in Andrographis paniculata (Burm f.) Wall ex Nees. as influenced by salinity and alkalinity. Int J Agric Environ Biotech 11(3):525–530

    Google Scholar 

  • Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S (2004) Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 92:291–295

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mishra P, Baskaran K, Shukla AK, Shasany AK, Sundaresan V (2016) Higher efficiency of ISSR markers over plastid psbA-trnH region in resolving taxonomical status of genus Ocimum L. Ecol Evol 6:7671–7682

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Rodrigues V, Mishra P, Baskaran K, Shukla AK, Shasany AK, Sundaresan V (2018) ISSR-derived species-specific SCAR marker for rapid and accurate authentication of Ocimum tenuiflorum L. Planta Med 84(2):117–122

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mishra P, Rodrigues V, Baskaran K, Verma RS, Padalia RC, Sundaresan V (2019) Delineation of Ocimum gratissimum L. complex combining morphological, molecular and essential oils analysis. Ind Crops Prod 139:111536

    Article  CAS  Google Scholar 

  • Lin F, Wu S, Lee S, Ng L (2009) Antioxidant, antioedema and analgesic activities of Andrographis paniculata extracts and their active constituent andrographolide. Phytother Res 23:958–964

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61(2):158–167

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Manikandan R, Favas PJC, Vikram Sahi S, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotox Environ Safe 108:249–257

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24:599–612

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martinez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycine betaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    Article  CAS  Google Scholar 

  • Misra HO, Khanuja SPS, Lal RK, Singh A, Gupta MM, Darokar MP, Shasany AK, Jain N, Patra DD, Verma RK, Tripathi RS, Singh M, Dhawan OP, Singh AK, Bansal RP (2005) High yielding variety of Kalmegh (Andrographis paniculata) ‘CIM-Megha.’ J Med Aromat Plant Sci 27(3):525–527

    Google Scholar 

  • Mkaddem M, Boussaid M, Fadhel NB (2007) Variability of volatiles in tunisian L. (Lamiaceae). J Essent Oil Res 19 (3):211-214

    Article  CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exper Bot 161:120–133

    Article  CAS  Google Scholar 

  • Nanduri S, Nyavanandi VK, Thunuguntla SRC, Kasu S, Pallerla MK, SaiRam P, Rajagopal S, Ajaya Kumar R, Ramanujam R, Moses Babu J, Vyas K, Sivalakshmi Devi K, Om Reddy G, Akella V (2004) Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg Med Chem Lett 14(18):4711–4717

    Article  CAS  PubMed  Google Scholar 

  • Neffati M, Marzouk B (2008) Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 28 (2):137-142

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60(3):324–349

    Article  CAS  Google Scholar 

  • Patel BB, Patel BB, Dave RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. J Appl Technol Environ Sanitation 1(1):87–92

    Google Scholar 

  • Penuelas J, Llusia J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404

    Article  PubMed  Google Scholar 

  • Qureshi M, Israr M, Abdin M, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53:185–193

    Article  CAS  Google Scholar 

  • Raina AP, Gupta V, Sivaraj N, Dutta M (2013) Andrographis paniculata (Burm. f.) Wall. ex Nees. (Kalmegh), a traditional hepatoprotective drug from India. Genet Resour Crop Evol 60:1181–1189

    Article  CAS  Google Scholar 

  • Rajpar I, Khanif YM, Saad MS (2007) Salt tolerance in Andrographis paniculata accessions. J Int Soc Southeast Asian Agric Sci 13:1–9

    Google Scholar 

  • Rao NK (2006) Anti-hyperglycemic and renal protective activities of Andrographis paniculata roots chloroform extract. Iran J Pharm Ther 5:47–50

    Google Scholar 

  • Rao YK, Vimalamma G, Rao CV, Tzeng YM (2004) Flavonoids and andrographolides from Andrographis paniculata. Phytochem 65:2317–2321

    Article  CAS  Google Scholar 

  • Rohman MM, Talukder MZA, Hossain MG, Uddin MS, Amiruzzaman M, Biswas A, Ahsan AFMS, Chowdhury MAZ (2016) Saline sensitivity leads to oxidative stress and increases the antioxidants in presence of proline and betaine in maize (Zea mays L.) inbred. Plant Omics J 9(1):35–47

    CAS  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  CAS  PubMed  Google Scholar 

  • Saxena RC, Singh R, Kumar P, Yadav SC, Negi MPS, Saxena VS, Joshua AJ, Vijayabalaji V, Goudar KS, Venkateshwarlu K, Amit A (2010) A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold) in patients with uncomplicated upper respiratory tract infection. Phytomed 17:17178–17185

    Article  CAS  Google Scholar 

  • Sharma RTS, Sehgal V, Handa SS (1991) Antihepatotoxic activity of some plants used in herbal formulations. Fitoterapia 62(2):131–138

    Google Scholar 

  • Shen YC, Chen CF, Chiou WF (2002) Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Brit J Pharmacol 135(2):399–406

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Roy S, Dey S (2003) Antimicrobial activity of Andrographis paniculata. Fitoterapia 74:692–694

    Article  Google Scholar 

  • Talei D, Yusop MK, Kadir MA, Valdiani A, Abdullah MP (2012) Response of king of bitters (Andrographis paniculata Nees.) seedlings to salinity stress beyond the salt tolerance threshold. Aust J Crop Sci 6(6):1059–1067

    CAS  Google Scholar 

  • Talei D, Kadir MA, Yusop MK, Valdiani A, Abdullah MP (2013a) Growth indices and salinity tolerance threshold in a medicinal plant Andrographis paniculata Nees. J Med Plants Res 7(3):104–110

    Google Scholar 

  • Talei D, Valdiani A, Yusop MK, Abdullah MP (2013b) Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica 189:147–160

    Article  CAS  Google Scholar 

  • Talei D, Valdiani A, Rafii MY, Maziah M (2014) Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata Nees. PLoS ONE 9(11):e112907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talei D, Valdiani A, Maziah M, Sagineedu SR, Abiri R (2015) Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees. Biosci Biotechnol Biochem 79:51–58

    Article  CAS  PubMed  Google Scholar 

  • Tan BH, Zhang A (2004) Andrographis paniculata and the cardio vascular system. In: Packer L, Ong CN, Halliwell B (eds) Herbal and traditional medicine: molecular aspects on health. CRC Press, Taipei, pp 441–456

    Google Scholar 

  • The Indian Pharmacopoeia Commission (IPC) (2007) Kalmegh. Indian pharmacopoeia, vol III. The Indian Pharmacopoeia Commission, Ghaziabad, p 2044

    Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V, Niazi A, Moghadam A (2018) Effect of salt stress on terpenoid biosynthesis in Salvia mirzayanii: from gene to metabolite. J Hortic Sci Biotechnol 94:389–399

    Article  CAS  Google Scholar 

  • Vaughan MM, Christensen S, Schmelz EA, Huffaker A, Mcauslane HJ, Alborn HT, Romero M, Allen LH, Teal PE (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 38(11):2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz A, Muzolf-Panek M, Golinski P (2013) Phenolic content changes in plants under salt stress. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 283–314

    Chapter  Google Scholar 

  • Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother Res 19(12):1069–1070

    Article  CAS  PubMed  Google Scholar 

  • Yu BC, Hung CR, Chen WC, Cheng JT (2003) Antihyperglycemic effect of andrographolide in streptozotocin-induced diabeticrats. Planta Med 69(12):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE 9(11):e112807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Director, CSIR-CIMAP, Lucknow, for his continuous support and providing the laboratory facilities required to carry out this research (CIMAP Institutional Communication No.: CIMAP/PUB/2018/79). The financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi through the Mission Programme “Phytopharmaceutical Mission—(HCP-010)” is gratefully acknowledged. Financial assistance in the form of Senior Research Fellowship to AK from Indian Council of Medical Research (ICMR), New Delhi (No.: 45/28/2018/TM/BMS) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velusamy Sundaresan.

Additional information

Communicated by S. Renault.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rodrigues, V., Verma, S. et al. Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiol Plant 43, 68 (2021). https://doi.org/10.1007/s11738-021-03237-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03237-x

Keywords

Navigation