Skip to main content

Advertisement

Log in

Phenolic compounds and allelopathic activities of ancient emmer wheats: perspective for non-chemical weed control scenarios

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phenolic compounds are natural phytotoxins which play role as chemical defense compounds in wheat species. However, the contribution and role of phenolic compounds in ancient and modern wheat genotypes for plant-to-plant interference are equivocal. Biological screening of seven wheat genotypes including five emmer wheat genotypes of Triticum turgidum ssp. dicoccum (Zarneh, Singerd, Shahrekord, Khoygan and Joneghan), one modern hexaploid wheat genotype (Triticum aestivum var. Roushan) and one modern tetraploid wheat genotype (Triticum turgidum var. Yavaroos) demonstrated that all wheat genotypes suppressed the seedling growth of Raphanus sativus L. by shoot aqueous extract in a dose–response bioassay. Modern hexaploid wheat genotypes along with ancient tetraploid emmer wheat genotypes possessed a high allelopathic capability. High-performance liquid chromatography diode array detection analysis of aqueous extracts indicated that the ability to synthesise polyphenolic compounds is different among genotypes. The total amount of polyphenolics and flavonoid compounds in shoot aqueous showed a significant correlation to the R. sativus growth suppression. These results suggest that the number of polyphenolics in general and syringic acid in particular may have contributed to the allelopathic effects of ancient tetraploid and modern hexaploid wheat genotypes. At the same time, results showed that ancient tetraploid emmer wheat may offer promising values for their unique composition of allelochemicals, indicating their potential in sustainable crop production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alinian S, Razmjoo J, Zeinali H (2016) Flavonoids, anthocyanins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind Crops Prod 81:49–55

    Article  CAS  Google Scholar 

  • Aslam F, Khaliq A, Matloob A, Tanveer A, Hussain S, Zahir AZ (2016) Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology 27:1–24

    Article  Google Scholar 

  • Bali AS, Batish RD, Singh HP, Kaur S, Kohli RK (2017) Phytotoxicity and weed management potential of leaf extracts of Callistemon viminalis against the weeds of rice. Acta Physiol Plant 39:1–9

    Article  CAS  Google Scholar 

  • Baziramakenga R, Simard RR, Leroux GD (1994) Effects of benzoic and cinnamic acids on growth, mineral composition and chlorophyll contents of soybean. J Chem Ecol 20:2821–2833. https://doi.org/10.1007/BF02098391

    Article  CAS  PubMed  Google Scholar 

  • Baziramakenga R, Leroux GD, Simard RR (1995) Effects of benzoic and cinnamic acids on membrane permeability of soybean root. J Chem Ecol 21:1271–1285. https://doi.org/10.1007/BF02027561

    Article  CAS  PubMed  Google Scholar 

  • Berthancientsson NO (2005) Early vigour and allelopathy two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res 45:94–102. https://doi.org/10.1111/j.1365-3180.2004.00442.x

    Article  Google Scholar 

  • Bertholdsson NO (2010) Breeding spring wheat for improved allelopathic potential. Weed Res 50:49–57. https://doi.org/10.1111/j.1365-3180.2009.00754.x

    Article  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20

    Google Scholar 

  • Bhowmik PC, Inderjit A (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–667

    Article  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu SW (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    Article  CAS  PubMed  Google Scholar 

  • Bordoni A, Danesi F, Nunzio MD, Taccari A, Valli V (2017) Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat. Int J Food Sci Nutr 68:278–286

    Article  PubMed  Google Scholar 

  • Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86

    Article  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:10–16

    Article  Google Scholar 

  • Devi SR, Prasad MNV (1992) Effect of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds. J Chem Ecol 18:1981–1990. https://doi.org/10.1007/BF00981921

    Article  CAS  PubMed  Google Scholar 

  • Dong SQ, Ma YQ, Wu HW, Shui JF, Ye XX, An Y (2013) Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy J 31:355–366

    Google Scholar 

  • Einhellig FA (1986) Mechanisms and mode of action of allelochemicals. In: Putnum AR, Tang CS (eds) The sciences of allelopathy. Wiley, New York, pp 171–188

    Google Scholar 

  • Favaretto A, Scheffer-Basso SM, Perez NB (2018) Allelopathy in Poaceae species present in Brazil A review. Agron Sustain Dev 38:22. https://doi.org/10.1007/s13593-018-0495-5

    Article  Google Scholar 

  • Feledyn-Szewczyk B (2013) The influence of morphological features of spelt wheat (Triticum aestivum ssp. spelta) and common wheat (Triticum aestivum ssp. vulgare) varieties on the competitiveness against weeds in organic farming system. J Food Agric Environ 11:416–421

    Google Scholar 

  • Guenzi WD, Mccalla TM (1966) Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity. Agron J 58:303–304

    Article  CAS  Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization and endogenous abscisic acid levels of tomato, cucumber and bean. J Chem Ecol 17:865–886. https://doi.org/10.1007/BF01395596

    Article  CAS  PubMed  Google Scholar 

  • Iannucci A, Fragasso M, Platani C, Papa R (2013) Plant growth and phenolic compounds in rhizosphere soil of wild oat (Avena fauta L.). Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Karimmojeni H, Rahimian-Mashhadi H, Alizadeh HM, Cousens RD (2010) Interference between maize and Xanthium strumarium or Datura stramonium. Weed Res 50:253–261. https://doi.org/10.1111/j.1365-3180.2010.00766.x

    Article  Google Scholar 

  • Karimmojeni H, Pirbaloti AG, Kudsk P, Kanani V, Ghafori A (2013) Influence of postemergence herbicides on weed management in spring-sown linseed. Agron J 105:821–826

    Article  CAS  Google Scholar 

  • Labbafi MR, Hejazi A, Meighani F, Khalaj H, Baghestani MA (2008) A Study of the Allelopathic potential of wheat (Triticum aestivum L.) cultivars on the growth of field bindweed (Convolvulus arvensis L.) and Rye (Secale cereal L.). Environ Sci 5:1–10

    Article  Google Scholar 

  • Labbafy MR, Maighany F, Hejazy A, Khalaj H, Baghestany AM, Allahdady I, Mehrafarin A (2009) Study of allelopathic interaction of wheat (Triticum aestivum L.) and rye (Secale cereal L.) using equal-compartment-agar method. Asian J Agri Sci 1:25–28

    Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and Plant Allelopathy. Molecules 15:8933–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YQ (2005) Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biol Manag 5:93–104

    Article  CAS  Google Scholar 

  • Mahmood K, Khaliq A, Cheema ZA, Arshad M (2013) Allelopathic activity of Pakistani wheat genotypes against wild oat (Avena fatua). Pak J Agr Sci 50:169–176

    Google Scholar 

  • Mathiassen SK, Kudsk P, Mogensen BB (2006) Herbicidal effects of soil-incorporated wheat. J Agric Food Chem 54:1058–1063. https://doi.org/10.1021/jf050904+

    Article  CAS  PubMed  Google Scholar 

  • Mersie W, Singh M (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J Chem Ecol 19:1293–1301. https://doi.org/10.1007/BF00984876

    Article  CAS  PubMed  Google Scholar 

  • Miri HR (2011) Allelopathy of 68 Iranian wheat genotypes released between 1939 and 2009. Asian J Agric Sci 3:462–468

    Google Scholar 

  • Motamedi M, Karimmojeni H, Ghorbani-Sini F (2016) Evaluation of allelopathic potential of safflower genotypes (Carthamus tinctorius L.). J Plant Protec Res 56:364–371

    Article  CAS  Google Scholar 

  • Pellissier F (2013) Improved germination bioassays for allelopathy research. Acta Physiol Plant 35:23–30

    Article  CAS  Google Scholar 

  • Penuelas J, Ribas-Carbo M, Giles L (1996) Effect of allelochemicals on plant respiration and oxygen isotopes fractionation by alternative oxidase. J Chem Ecol 22:801–805. https://doi.org/10.1007/BF02033587

    Article  CAS  PubMed  Google Scholar 

  • Prasanta CB, Inderjit A (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Protect 22:661–671. https://doi.org/10.1016/S0261-2194(02)00242-9

    Article  Google Scholar 

  • Putnam AR, Duke WB (1974) Biological suppression of weeds–evidence for allelopathy in accessions of cucumber. Science 185:370–372

    Article  CAS  PubMed  Google Scholar 

  • Rajput P, Rao PB (2013) Effect of different wheat straw extracts on germination and growth of three dominant weed species. Int J Bot 3:71–78

    Google Scholar 

  • Razavifar Z, Karimmojeni H, Ghorbani-Sini F (2017) Effects of wheat-canola intercropping on Phelipanche aegyptiaca parasitism. J Plant Protec Res 57:268–274

    Article  Google Scholar 

  • Sánchez-Moreiras AM, Weiss OA, Reigosa-Roger MJ (2004) Allelopathic evidence in the Poaceae. Bot Rev 69:300–319. https://doi.org/10.1663/0006-8101

    Article  Google Scholar 

  • Seal AN, Pratley JE, Haig T, An M (2004) Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol 30:1647–1662

    Article  CAS  PubMed  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  CAS  Google Scholar 

  • Shewry PR, Hey S (2015) Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci 65:236–243. https://doi.org/10.1016/j.jcs.2015.07.014

    Article  CAS  Google Scholar 

  • Tranel PJ, Horvath DP (2009) Molecular biology and genomics: new tools for weed science. Bioscience 59:207–215. https://doi.org/10.1525/bio.2009.59.3.5

    Article  Google Scholar 

  • Vaghar M, Ehsanzadeh P (2018) Comparative photosynthetic attributes of emmer and modern wheats in response to water and nitrogen supply. Photosynthetica 56:1224–1234

    Article  CAS  Google Scholar 

  • Worthington M, Reberg-Horton C (2013) Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability. J Chem Ecol 39:213–231

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2001) Allelopathy in wheat (Triticum aestivum). Ann Appl Biol 139:1–9. https://doi.org/10.1111/j.1744-7348.2001.tb00124.x

    Article  CAS  Google Scholar 

  • Wu H, Pratley J, Haig T (2003a) Phytotoxic effects of wheat extracts on a herbicide-resistant biotype of annual ryegrass (Lolium rigidum). J Agric Food Chem 51:4610–4616

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Pratley J, Ma W, Haig T (2003b) Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor Appl Genet 107:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Ze-Lin L, Harnly JM (2010) Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem 120:319–326. https://doi.org/10.1016/j.foodchem.2009.09.083

    Article  CAS  Google Scholar 

  • Zhang SZ, Li YH, Kong CH, Xu XH (2016) Interference of allelopathic wheat with different weeds. Pest Manag Sci 72:172–178. https://doi.org/10.1002/ps.3985

    Article  CAS  PubMed  Google Scholar 

  • Zuo YQ, Ma S (2007) Allelopathy variation in dryland winter wheat (Triticum aestivum L.) accessions grown on the Loess Plateau of China for about fifty years. Genetic Res Crop Evol 54:1381–1393. https://doi.org/10.1007/s10722-006-9123-3

    Article  Google Scholar 

  • Zuo SP, Liu GB, Li M (2012) Genetic basis of allelopathic potential of winter wheat based on the perspective of quantitative trait locus. Field Crops Res 135:67–73

    Article  Google Scholar 

  • Zuo S, Li X, Ma Y, Yang S (2014) Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil 378:49–58. https://doi.org/10.1007/s11104-013-2020-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Karimmojeni.

Additional information

Communicated by F. Araniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatholahi, S., Karimmojeni, H. & Ehsanzadeh, P. Phenolic compounds and allelopathic activities of ancient emmer wheats: perspective for non-chemical weed control scenarios. Acta Physiol Plant 42, 135 (2020). https://doi.org/10.1007/s11738-020-03128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03128-7

Keywords

Navigation