Skip to main content

Advertisement

Log in

Effects of ultraviolet radiation on the morphophysiology of the macroalga Pyropia acanthophora var. brasiliensis (Rhodophyta, Bangiales) cultivated at high concentrations of nitrate

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The abiotic and biotic factors of the environments are constantly changing, making sessile organisms, such as macroalgae, need to adjust to the given location. Two abiotic factors that change a lot are the nitrate (NO3) concentration, thanks to the release of untreated sewage directly into the sea, and high irradiance due to the decrease in the ozone layer (O3). The goal of this study is to understand if the quantity of NO3 influences the growth rate, ultrastructure, concentration, and autofluorescence of photosynthetic pigments, and concentration secondary and antioxidant metabolites of the algae Pyropia acanthophora var. brasiliensis exposed to ultraviolet radiation (UVR). Experiments with the algae were carried out with exposure to 0, 25, 50, and 100 mM of NO3 and PAB (= PAR + UVAR + UVBR) for 3 h a day for a period of 7 days, all after an acclimatization of 7 days. In samples exposed to UVR, there was an increase in antioxidant metabolites, while the highest concentrations of total soluble sugars and starch were found in the samples exposed to PAB [0]. High growth rates were observed in samples cultured with NO3 without UVR. In samples exposed to UVR, a decrease in the growth rates occurred, but the NO3 contributed to maintain the positive growth rates. This samples showed no alterations in the structure of the thylakoids of chloroplasts and there was no decrease in their autofluorescence. The presence of different concentrations of NO3 in the culture favored the production of photosynthetic pigments and the production of phenolic compounds, contributing to minimize the effects of ultraviolet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aman R, Carle R, Beifuss U, Schieber A (2005) Isolation of carotenoids from plant materials and dietary supplements by high-speed counter-current chromatography. J Chromatogr A 1074:99–105

    CAS  PubMed  Google Scholar 

  • Barbosa CF (2005) Hidrogeoquímica e a contaminação por nitrato em água subterrânea no bairro Piranema, Seropédica-RJ. Dissertation of Campinas State University

  • Barufi J, Mata M, Oliveira M, Figueroa F (2012) Nitrate reduces the negative effect of UV radiation on photosynthesis and pigmentation in Gracilaria tenuistipitata (Rhodophyta): the photoprotection role of mycosporine-like amino acids. Phycologia 51:636–648

    CAS  Google Scholar 

  • Bischof K, Krabs G, Wiencke C, Hanelt D (2002) Solar ultraviolet radiation affects the activity of ribulose-1,5-biphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the interdial green alga Ulva lactuca L. Planta 215:502–509

    CAS  PubMed  Google Scholar 

  • Bisson MA (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    CAS  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC et al (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16(1):29–37

    CAS  PubMed  Google Scholar 

  • Bouzon ZL, Sauer KRS (1993) Chlorophyta e Phaeophyta bentônicas da Ilha de Ratones Grande-Santa Catarina-Brasil. Insula Revista de Botânica 22:187–207

    Google Scholar 

  • Bouzon ZL, Chow F, Zitta CS et al (2012) Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-B on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Microsc Microanal 18:1467–1479

    CAS  PubMed  Google Scholar 

  • Braga B (2005) Introdução à engenharia ambiental, o desafio do desenvolvimento sustentável, 2nd edn. Pearson Prentice Hall, São Paulo

    Google Scholar 

  • Cardozo KHM (2007) Estudos de compostos fotoprotetores da radiação ultravioleta em algas: aminoácidos tipo micosporinas (MAAs). Doctoral Dissertation of University of São Paulo

  • Chaloub RM, Motta NMS, de Araujo SP et al (2015) Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae). Algal Res 8:89–94

    Google Scholar 

  • Chan CX, Blouin NA, Zhuang Y et al (2012) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal sevelopment and metabolism. J Phycol 48:1328–1342

    CAS  PubMed  Google Scholar 

  • Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9(9):1607–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davison IR, Jordan TL, Fegley JC, Grobe CW (2007) Response of Laminaria saccharina (Phaeophyta) growth and photosynthesis to simultaneous ultraviolet radiation and nitrogen limitation. J Phycol 43:636–646

    CAS  Google Scholar 

  • Edwards P (1972) Cultured red alga to measure pollution. Mar Pollut Bull 3:184–188

    CAS  Google Scholar 

  • Faveri C, Schmidt EC, Simioni C et al (2015) Effects of eutrophic seawater and temperature on the physiology and morphology of Hypnea musciformis J. V. Lamouroux (Gigartinales, Rhodophyta). Ecotoxicology 24(5):1040–1052

    PubMed  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Google Scholar 

  • Gordon EM, McCandless EL (1973) Ultraestructure and histochemistry of Chondrus crispus Stackhouse. N S Inst Sci 27:111–133

    Google Scholar 

  • Henry BE, Van Alstyne KL (2004) Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J Phycol 40:527–533

    CAS  Google Scholar 

  • Ho FC (2012) Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. Agric Biol Sci Appl Photosynth Tech 5:105–120

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Kaňa R, Kotabová E, Lukeš M et al (2014) Phycobilisome mobility and its role in the regulation of light harvesting in red algae. Plant Physiol 165:1618–1631

    PubMed  PubMed Central  Google Scholar 

  • Kim GH, Klochkova TA, Lee DJ, Im SH (2016) Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea. Algal Res 17:293–299

    Google Scholar 

  • Korbee N, Mata MT, Figueroa FL (2010) Photoprotection mechanisms against ultraviolet radiation in Heterocapsa sp. (Dinophyceae) are influenced by nitrogen availability, mycosporine-like amino acids vs. xanthophyll cycle. Limnol Oceanog 55:899–908

    CAS  Google Scholar 

  • Kottuparambil S, Shin W, Brown MT, Han T (2012) UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter. Aquat Toxicol 123:206–213

    Google Scholar 

  • Kováčik J, Klejdus B, Bačkor M (2010) Physiological responses of Scenedesmus quadricauda (Chlorophyceae) to UV-A and UV-C light. Photochem Photobiol 86:612–616

    PubMed  Google Scholar 

  • Kursar TA, Alberte RS (1983) Photosynthetic unit organization in a red alga. Plant Physiol 72:409–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CE, Remfert JL, Chang YM (2007) Response to selection and evolvability of invasive populations. Genetica 129:179–192

    PubMed  Google Scholar 

  • Madronich S (1992) Implications of recent total atmospheric ozone measurements for biologically-active ultraviolet-radiation reaching the earths surface. Geophys Res Lett 19:37–40

    CAS  Google Scholar 

  • McCully KS, Ragsdale BD (1970) Production of arteriosclerosis by homocysteinemia. Am J Pathol 61:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munier M, Jubeau S, Wijaya A et al (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem 150:400–407

    CAS  PubMed  Google Scholar 

  • Parmar A, Singh NK, Dhoke R, Madamwar D (2013) Influence of light on phycobiliprotein production in three marine cyanobacterial cultures. Acta Physiol Plant 35:1817–1826

    CAS  Google Scholar 

  • Penniman CA, Mathieson AC, Emerich PC (1986) Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the great bay estuary, New Hampshire. Bot Mar 29:147–154

    Google Scholar 

  • Polo LK, Marthiellen MR, Kreusch M et al (2014) Photoacclimation responses of the brown macroalga sargassum cymosum to the combined influence of UV radiation and salinity: cytochemical and ultrastructural organization and photosynthetic performance. Photochem Photobiol 90:560–573

    CAS  PubMed  Google Scholar 

  • Pueschel CM (1979) Ultrastructure of tetrasporogenesis in Palmaria palmata (Rhodophyta). J Phycol 15:409–424

    Google Scholar 

  • Quinlan RF, Shumskaya M, Bradbury LMT et al (2012) Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiol 160:204–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramlov F (2010) Variação sazonal dos carotenóides e compostos fenólicos e estudos fisiológicos em diferentes estádios reprodutivos de Gracilaria domingensis (Kütz.) Sonder ex Dickie (Gracilariales, Rhodophyta). Doctoral Dissertation of Instituto de Botânica

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romay C, González R, Ledón N et al (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    CAS  PubMed  Google Scholar 

  • Schiavon M, Moro I, Pilon-Smits EA, Matozzo V, Malagoli M, Dalla Vecchia F (2012) Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aqua Toxicol 122:222–231

    Google Scholar 

  • Schmidt ÉC, Kreusch M, Marthiellen MR et al (2015) Effects of ultraviolet radiation (UVA+UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem Photobiol 91:359–370

    CAS  PubMed  Google Scholar 

  • Simioni C, Rover T, Schmidt ÉC et al (2014) Effects of brefeldin A on the endomembrane system and germ tube formation of the tetraspore of Gelidium floridanum (Rhodophyta, Florideophyceae). J Phycol 50:577–586

    CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia Vegetal, 5th edn. Artmed, Porto Alegre

    Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    CAS  PubMed  Google Scholar 

  • Tevini M, Steinmuller D (1985) Composition and function of plastoglobuli. Planta 163:91–96

    CAS  PubMed  Google Scholar 

  • Trevelyan WE, Harrison JS (1952) Studies on yeast metabolism. Fractionation and microdetermination of cell carbohydrates. Bioch J. 50:298

    CAS  Google Scholar 

  • Vesilind PA, Morgan SM (2013) Introdução à engenharia ambiental. Cengage Learning, São Paulo

    Google Scholar 

  • Zacarias AA, Moresco HH, Horst H, Brighente IMC, Marques MCA, Pizzollati MG, (2007) Determinação do teor de fenólicos e flavonoides no extrato e frações de Tabebuia heptaphylla. 30ª Reunião Anual da Sociedade Brasileira de Química, Santa Maria, Rio Grande do Sul

  • Zhao J, Lixia LI (2014) Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina. Chin J Oceanol Limnol 32:1364–1372

    CAS  Google Scholar 

  • Zhou C, Yu X, Zhang Y et al (2012) Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr Polym 87:2046–2051

    CAS  Google Scholar 

  • Zitta CS, Rover T, Hayashi L, Bouzon ZL (2013) Callus ontogeny of the Kappaphycus alvarezii (Rhodophyta, Gigartinales) brown tetrasporophyte strain. J Appl Phycol 25:615–629

    CAS  Google Scholar 

  • Zubia M, Freile-Pelegrin Y, Robledo D (2014) Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress. J Appl Phycol 26:2001–2010

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianópolis, SC, Brazil, for the use of their transmission electron microscopy and confocal microscopy. The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the financial support. Zenilda L. Bouzon and Marcelo Maraschin are CNPq fellow. This study is part of the part of the Ph.D. thesis of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Tomazi Pereira.

Additional information

Communicated by J. Kovacik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2020_3057_MOESM1_ESM.tif

Supplementary file1 Supplementary Figure 1. Culture room where the experiment with P. acanthophora var. brasiliensis. a. Photosynthetically active radiation (PAR) of 80 µmol.photons.m-2s-1 (fluorescent lamps, Philips C-5 Super 84 16W/840). b. Artificial UVAR and UVBR were supplied by a VilberLourmat VL-6LM lamp (Marne La Vallée – France), which emits wavelengths of 312 nm (UVBR) and 365 nm (UVAR) (arrow) (TIF 7814 kb)

11738_2020_3057_MOESM2_ESM.tif

Supplementary file2 Supplementary Figure 2. Chromatographic profile of carotenoids (HPLC, 450 nm) from P. acanthophora var. brasiliensis extract. The peaks are named with each carotenoid (TIF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, D.T., Schmidt, É.C., Filipin, E.P. et al. Effects of ultraviolet radiation on the morphophysiology of the macroalga Pyropia acanthophora var. brasiliensis (Rhodophyta, Bangiales) cultivated at high concentrations of nitrate. Acta Physiol Plant 42, 61 (2020). https://doi.org/10.1007/s11738-020-03057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03057-5

Keywords

Navigation