Skip to main content

Advertisement

Log in

Differential tolerance to water deficit in two açaí (Euterpe oleracea Mart.) plant materials

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Two açaí plant materials (BRS-PA cultivar and Hideo ecotype) were subjected to differential irrigation to examine its potential tolerance to water deficit. Seedlings were grown for 45 days under irrigation replacing different volumes of water required to the soil reaches field capacity (FC). The irrigations replaced 100% FC (control treatment), 70% FC, and 40% FC (water deficit treatments). The Hideo ecotype showed more significant decreases in leaf water potential than BRS-PA. The former showed lower net CO2 assimilation rate (A), stomatal conductance (g s), transpiration and instantaneous water use efficiency, particularly under irrigation of 70% FC. In Hideo, the decreases in A mediated by water deficit were coupled to chlorophyll (Chl) degradation. In BRS-PA, the A and Chl content were decreased only under 40% FC. Starch content was unchanged between plant materials irrigated with 70% FC; however, it was decreased in Hideo seedlings irrigated with 40% FC. Accumulation of total soluble carbohydrates, glucose, and fructose has occurred in Hideo ecotype under 70% FC and in both plant materials under 40% FC. The water deficit caused more striking decreases in Hideo growth than in BRS-PA, especially by reducing leaf dry matter, root dray matter (under 70% FC), and both total and specific leaflet areas. Under irrigation with 40% FC, plant material differences in growth variables were negligible. The results indicate that BRS-PA cultivar tolerate mild water deficit (70% FC) more satisfactorily than Hideo; however, both plant materials were equally sensitive to more severe water deficit (40% FC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque MPF, Moraes FKC, Santos RIN, Castro GLS, Ramos EMLS, Pinheiro HA (2013) Ecophysiology of young African mahogany plants subjected to water deficit and rewetting. Pesq Agropec Bras 48:9–16

    Article  Google Scholar 

  • Ali ZI, Golombek SD (2016) Effect of drought and nitrogen availability on osmotic adjustment of five pearl millet cultivars in the vegetative growth stage. J Agron Crop Sci. doi:10.1111/jac.12163

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bastos TX, Müller AA, Pacheco NA, Sampaio SMN, Assad ED, Marques AFS (2001) Climatic risks zoning for oil palm in Pará state, Brazil. Rev Bras Agrometeorol 9:564–570

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97:248–253

    Article  Google Scholar 

  • Calbo MER, Moraes JAPV (2000) Efeitos da deficiência de água em plantas de Euterpe oleracea (açaí). Rev Bras Bot 23:225–230

    Article  Google Scholar 

  • Cattanio JH, Anderson AB, Carvalho MS (2002) Floristic composition and topographic variation in a tidal floodplain forest in the Amazon Estuary. Rev Bras Bot 25:419–430

    Article  Google Scholar 

  • Cha-Um S, Takabe T, Kirdmanee C (2012) Physio-biochemical responses of oil palm (Elaeis guineensis Jacq.) seedlings to mannitol- and polyethylene glycol-induced iso-osmotic stresses. Plant Prod Sci 15:65–72

    Article  CAS  Google Scholar 

  • Cha-Um S, Yamada N, Takabe T, Kirdmanee C (2013) Physiological features and growth characters of oil palm (Elaeis guineensis Jacq.) in response to reduced water-deficit and rewatering. Aust J Crop Sci 7:432–439

    CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro YEM, Pinheiro HA, Santos-Filho BG, Corrêa SS, Dias-Filho MB (2009) Physiological and morphological responses of young mahogany (Swietenia macrophylla King) plants to drought. For Ecol Manag 258:1449–1455

    Article  Google Scholar 

  • Cruz FJR, Castro GLS, Silva Júnior DD, Festucci-Buselli RA, Pinheiro HA (2013) Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51:102–108

    Article  CAS  Google Scholar 

  • Davidson EA, Araújo AC, Artaxo P, Balch JK, Foster Brown I, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, William Munger J, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • Díaz-López L, Gimeno V, Simón I, Martínez V, Rodríguez-Ortega WM, García-Sánchez F (2012) Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agr Water Manag 105:48–56

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets U, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84

    Article  PubMed  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Leite HG, Aquino LA (2008) Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62:195–204

    Article  CAS  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Aquino LA (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hort 126:379–384

    Article  CAS  Google Scholar 

  • Gonçalves JFC, Lima RBS, Fernandes AV, Lima e Borges EE, Buckeridge MS (2010) Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Rev Árvore 34:1045–1053

    Article  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Mart.)—a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4:10–21

    Article  CAS  Google Scholar 

  • Klar AE, Villa Nova NA, Marcos ZZ, Cervellini A (1966) Determinação da umidade do solo pelo método das pesagens. Ann Esc Sup Agrie Luiz Queiroz 23:6–30

    Google Scholar 

  • Lamade E, Tcherkez G, Darlan NH, Rodrigues RL, Fresneau C, Mauve C, Lamothe-Sibold M, Sketriené D, Ghashghaie J (2016) Natural 13C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern. Plant Cell Environ 39:199–212

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Legros S, Mialet-Serra I, Clement-Vidal A, Caliman J-P, Siregar FA, Fabre D, Dingkuhn M (2009) Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis). Tree Physiol 29:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Ling Q, Huang W, Jarvis P (2011) Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res 107:209–214

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Mar CC, Conceição HEO, Santos ABR, Viegas IJM, Silva SN (2013) Produção de massa seca e área foliar do açaizeiro sob déficit hídrico. Rev Agroecossistemas 5:14–23

    Article  Google Scholar 

  • Méndez YDR, Chacón LM, Bayona CJ, Romero HM (2012) Physiological response of oil palm interspecific hybrids (Elaeis oleifera H.B.K. Cortes versus Elaeis guineensis Jacq.) to water deficit. Braz J Plant Physiol 24:273–280

    Article  Google Scholar 

  • Moraes BC, Costa JMN, Costa ACL, Costa MH (2005) Spatial and temporal variation of precipitation in the State of Pará. Acta Amazon 35:207–214

    Article  Google Scholar 

  • Muñiz-Miret NVR, Hiraoka M, Montagnini F, Mendelsohn RO (1996) The economic value of managing the açaí palm (Euterpe oleracea Mart.) in the floodplains of the Amazon estuary, Pará, Brazil. For Ecol Manag 87:163–173

    Article  Google Scholar 

  • Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204

    Article  CAS  Google Scholar 

  • Nascimento HHC, Nogueira RJMC, Silva EC, Silva MA (2011) Análise do crescimento de mudas de jatobá (Hymenaea courbaril L.) em diferentes níveis de água no solo. Rev Árvore 35:617–626

    Article  Google Scholar 

  • Oliveira MSP, Farias Neto JT (2004) Cultivar BRS-Pará: Açaizeiro para produção de frutos em terra firme. Embrapa Amazônia Oriental, Comunicado Técnico, vol 114, Belém

  • Oliveira MSP, Silva KJD (2008) Genetic differentiation in provenances of açaí tree by RAPD and SSR markers. Rev Bras Frutic 30:438–443

    Article  Google Scholar 

  • Oliveira MAJ, Bovi MLA, Machado EC, Gomes MMA, Habermann G, Rodrigues JD (2002) Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica. Sci Agric 59:59–63

    Article  Google Scholar 

  • Parolin P, Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF, Junk WJ (2004) Central amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Passos CD, Passos EEM, Prado CHBA (2005) Seasonal performance of water potential and gas exchange in four variety of dwarf coconut. Rev Bras Frutic 27:248–254

    Article  Google Scholar 

  • Pereira TS, Lobato AKS, Alves GAR, Ferreira RN, Silva ON, Martins Filho AP, Pereira ES, Sampaio LS (2014) Tolerance to waterlogging in young Euterpe oleracea plants. Photosynthetica 52:186–192

    Article  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro HA, Silva JV, Endres L, Ferreira VM, Câmara CA, Cabral FF, Oliveira JF, Carvalho LWT, Santos JM, Santos Filho BG (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27:385–392

    Article  CAS  Google Scholar 

  • Rufino MSM, Pérez-Jiménez J, Arranz S, Alves RE, Brito ES, Oliveira MSP, Saura-Calixto F (2011) Açaí (Euterpe oleracea) ‘BRS Pará’: a tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Res Int 44:2100–2106

    Article  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Silva PA, Oliveira IV, Rodrigues KCB, Cosme VS, Bastos AJR, Detmann KSC, Cunha RL, Festucci-Buselli RA, DaMatta FM, Pinheiro HA (2016) Leaf gas exchange and multiple enzymatic and non-enzymatic antioxidant strategies related to drought tolerance in two oil palm hybrids. Trees 30:203–214

    Article  CAS  Google Scholar 

  • Silvestre WVD, Pinheiro HA, Souza RORM, Palheta LF (2016) Morphological and physiological responses of açaí seedlings subjected to different watering regimes. Rev Bras Eng Agríc Ambient 20:364–371

    Article  Google Scholar 

  • Stitt M, Lilley RMCC, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol 174:518–552

    Article  CAS  Google Scholar 

  • Sun C-S, Cao H-X, Shao H-B, Lei X-T, Xiao Y (2011) Growth and physiological responses to water and nutrient stress in oil palm. Afric J Biotech 10:10465–10471

    Article  Google Scholar 

  • Suresh K, Nagamani C, Ramachanduru K, Mathur RK (2010) Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery. Photosynthetica 48:430–436

    Article  CAS  Google Scholar 

  • Suresh K, Nagamani C, Kantha DL, Kumar MK (2012) Changes in photosynthetic activity in five common hybrids of oil palm (Elaeis guineensis Jacq.) seedlings under water deficit. Photosynthetica 50:549–556

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Trethewey RN, Geigenberger P, Riedel K, Hajirezaei M-R, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L (1998) Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Tucci MLS, Erismann NM, Machado EC, Ribeiro RV (2010) Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical condition. Photosynthetica 48:421–429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Institute of Agricultural Sciences and Socio-environmental and Water Resources Institute of the Federal Rural University of Amazon (UFRA, Belém, Brazil) for the facilities during all experimental activities. PAS and LFP scholarships were granted by Coordination for the Improvement of Higher Education Personnel (CAPES, Brasília, Brazil). The authors also thank Dr. Maria do Socorro Padilha (Embrapa Eastern Amazon, Belém, Brazil) for the donation of BRS-PA cultivar seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Alves Pinheiro.

Additional information

Communicated by R. Aroca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestre, W.V.D., Silva, P.A., Palheta, L.F. et al. Differential tolerance to water deficit in two açaí (Euterpe oleracea Mart.) plant materials. Acta Physiol Plant 39, 4 (2017). https://doi.org/10.1007/s11738-016-2301-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2301-9

Keywords

Navigation