Skip to main content
Log in

The composition of pericarp, cell aging, and changes in water absorption in two tomato genotypes: mechanism, factors, and potential role in fruit cracking

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cracking, a serious problem in many fruits, may cause significant economic losses. It may occur when internal pressure cannot sustain by the epidermis any longer. Water absorption and epidermis are among the most important factors that associated with cracking. To determine whether pericarp composition and its mechanical performance, endogenous cell wall disassembly, and water-absorbing capacity influences tomato fruit cracking, we grew a cracking-resistant genotype ‘LA1698’ and susceptible genotype ‘LA2683’. The results illustrated that the cuticle and subcutaneous layer were thicker in ‘LA1698’ than in ‘LA2683’. Compared with ‘LA2683’, the fruit firmness, consistency, and bursting strength of ‘LA1698’ were all higher. Fruits of ‘LA1698’ had decreased activities of polygalacturonase, β-galactosidase, and cellulose, which can disassemble the polysaccharide network. As a result, it had reduced water-soluble pectin and more covalently and ionically bound pectin that can crosslink with Ca2+ and B. These fruits also have a greater abundance of hemicelluloses. In addition, ‘LA1698’ had higher SOD activities and lower relative conductivity, meaning its cells might have a better biological activity to resist changes of the external environment (such as water variation) and to prevent fruit cracking. However, POD in ‘LA2683’ was more abundant than in ‘LA1698’. ‘LA1698’ produced juice with lower total soluble solids, which led to a lower initial water-absorbing ability and difference between the exocarp and mesocarp. In conclusion, a stronger pericarp and cells with a better biological activity in addition to the lower water-absorbing difference between the exocarp and mesocarp made ‘LA1698’ more resistant to cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AIR:

Alcohol-insoluble residue

B:

Boron

β-gal:

β-Galactosidase

CW:

Cell wall

Cel-Hem:

Cellulose-hemicellulose

CDT:

Chelator trans-1,2-diaminocyclohexane-N,N, N′,N′-tetraacetic acid

CSP:

Chelator-soluble pectin fraction of largely pectins ionically bound via linkages to Ca2+ and are soluble in the CDTA

Cx:

Cellulase

Ca2+ :

Calcium ion

EXP:

Expansin

K+ :

Potassium ion

Mg2+ :

Magnesium ion

PME:

Pectin methylesterase

PG:

Polygalacturonase

SSP:

Sodium carbonate-soluble pectin fraction mainly pectins covalently bound by ester linkages in the cell wall

TSS:

Total soluble solids

WSP:

Water-soluble pectin fraction mainly pectins with no strong bonds to the rest of the cell wall

24KHC:

24 % KOH-soluble hemicelluloses

4KHC:

4 % KOH-soluble hemicelluloses

References

  • Abbott J, Peet M, Willits D, Sanders D, Gough R (1986) Effects of irrigation frequency and scheduling on fruit production and radial fruit cracking in greenhouse tomatoes in soil beds and in a soil-less medium in bags. Sci Hortic 28(3):209–217

    Article  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Almeida DP, Huber DJ (2001) Transient increase in locular pressure and occlusion of endocarpic apertures in ripening tomato fruit. J Plant Physiol 158(2):199–203

    Article  CAS  Google Scholar 

  • Balbontín C, Ayala H, Bastías RM, Tapia G, Ellena M, Torres C, Yuri JA, Quero-García J, Ríos JC, Silva H (2013) Cracking in sweet cherries: a comprehensive review from a physiological, molecular, and genomic perspective. Chil J Agr Res 73(1):66–72

    Article  Google Scholar 

  • Balbontín C, Ayala H, Rubilar J, Cote J, Figueroa CR (2014) Transcriptional analysis of cell wall and cuticle related genes during fruitdevelopment of two sweet cherry cultivars with contrasting levels of crackingtolerance. Chil J Agr Res 74(2):162–169

    Article  Google Scholar 

  • Bargel H, Neinhuis C (2005) Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J Exp Bot 56(413):1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489

    Article  CAS  PubMed  Google Scholar 

  • Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2(4):1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Biol 46(1):95–122

    Article  CAS  Google Scholar 

  • Campa A (1991) Biological roles of plant peroxidases: known and potential functions. Peroxidases Chem Biol 2:25–50

    CAS  Google Scholar 

  • Cantu D, Vicente A, Greve L, Dewey F, Bennett A, Labavitch J, Powell A (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci USA 105(3):859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita N, McCann M (2000) The cell wall. Am Soc Plant Physiol, Rockville

    Google Scholar 

  • Choi HM, Son IC, Kim DI (2010) Effects of calcium concentrations of coating bag on pericarp structure and berry cracking in ‘Kyoho’ grape (Vitis sp.). Korean J Hortic Sci 28(4):561–566

    CAS  Google Scholar 

  • Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant growth. New Phytol 124:1–23

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Palomares G, Balasch S, Nuez F (1981) Tomato fruit cracking under plastic-house and in the open air. Eucarpia Tomato Working, Avignon

    Google Scholar 

  • Domínguez E, Cuartero J, Heredia A (2011) An overview on plant cuticle biomechanics. Plant Sci 181(2):77–84

    Article  PubMed  Google Scholar 

  • Domínguez E, Fernández MD, Hernández JCL, Parra JP, España L, Heredia A, Cuartero J (2012) Tomato fruit continues growing while ripening, affecting cuticle properties and cracking. Physiol Plantarum 146(4):473–486

    Article  Google Scholar 

  • Ehret D, Helmer T, Hall J (1993) Cuticle cracking in tomato fruit. J Horti Sci 68(2):195–201

    Google Scholar 

  • Emmons CLW, Scott JW (1997) Environmental and physiological effects on cuticle cracking in tomato. J Am Soc Hortic Sci 122(6):797–801

    Google Scholar 

  • Emmons CLW, Scott JW (1998) Ultrastructural and anatomical factors associated with resistance to cuticle cracking in tomato (Lycopersicon esculentum Mill.). Int J Plant Sci 159(1):14–22

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  • Hahn F (2011) Fuzzy controller decreases tomato cracking in greenhouses. Comput Electron Agr 77(1):21–27

    Article  Google Scholar 

  • Hankinson B, Rao VNW (1979) Histological and physical behavior of tomato skins susceptible to cracking. J Am Soc Hortic Sci 104:577–581

    Google Scholar 

  • Huang X, Wang H, Gao F, Huang H (1999) A comparative study of the pericarp of litchi cultivars susceptible and resistant to fruit cracking. J Hortic Sci Biotec 3:351–354

    Article  Google Scholar 

  • Huang X, Li J, Wang H, Huang H, Gao F (2001) The relationship between fruit cracking and calcium in litchi pericarp. Acta Hortic 558:209–215

    Article  CAS  Google Scholar 

  • Huang XM, Wang HC, Lu XJ, Yuan WQ, Lu JM, Li JG, Huang HB (2006) Cell wall modifications in the pericarp of litchi (Litchi chinensis Sonn.) cultivars that differ in their resistance to cracking. J Hortic Sci Biotech 81(2):231–237

    Article  Google Scholar 

  • Huang XM, Wang HC, Zhong WL, Yuan WQ, Lu JM, Li JG (2008) Spraying calcium is not an effective way to increase structural calcium in litchi pericarp. Sci Hortic 117(1):39–44

    Article  CAS  Google Scholar 

  • Huxham IM, Jarvis MC, Shakespeare L, Dover CJ, Johnson D, Knox JP, Seymour GB (1999) Electron-energy-loss spectroscopic imaging of calcium and nitrogen in the cell walls of apple fruits. Planta 208(3):438–443

    Article  CAS  Google Scholar 

  • Jeffree CE (1996) Structure and ontogeny of plant cuticles. BIOS Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Jiang DA (2011) Plant physiology. Higher Education Press, Beijing

    Google Scholar 

  • Kasai S, Hayama H, Kashimura Y, Kudo S, Osanai Y (2008) Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’ apples (Malus domestica Borkh.). Sci Hortic 116(2):194–198

    Article  CAS  Google Scholar 

  • Khadivi-Khub A (2009) Pomolog. Agriculture Education Press, Tehran

    Google Scholar 

  • Khadivi-Khub A (2015) Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant 37(1):1–14

    Article  Google Scholar 

  • Khanal BP, Grimm E, Knoche M (2011) Fruit growth, cuticle deposition, water uptake, and fruit cracking in jostaberry, gooseberry, and black currant. Sci Hortic 128(3):289–296

    Article  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 119:199–203

    Article  Google Scholar 

  • Li J, Huang H (1996) Advance in the research in litchi fruit cracking. J Fruit Sci 13:257–261

    Google Scholar 

  • Lu W, Wang Y, Jiang Y, Li J, Liu H, Duan X, Song L (2006) Differential expression of litchi XET genes in relation to fruit growth. Plant Physiol Bioch 44(11):707–713

    Article  CAS  Google Scholar 

  • MacDougall AJ, Needs PW, Rigby NM, Ring SG (1996) Calcium gelation of pectic polysaccharides isolated from unripe tomato fruit. Carbohyd Res 293(2):235–249

    Article  CAS  Google Scholar 

  • Matas AJ, Cobb ED, Paolillo DJ, Niklas KJ (2004) Crack resistance in cherry tomato fruit correlates with cuticular menbrane thickness. Hortscience 39(6):1354–1358

    Google Scholar 

  • Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a ß-galactosidase gene (TBG6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Muñoz J, García-Molina F, García-Ruiz P, Arribas E, Tudela J, García-Cánovas F, Rodriguez-Lopez J (2009) Enzymatic and chemical oxidation of trihydroxylated phenols. Food Chem 113(2):435–444

    Article  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Sci 294(5543):846–849

    Article  Google Scholar 

  • Opara L (1996) Some characteristics of internal ring-cracking in apples. Fruit Var J 50:260–262

    Google Scholar 

  • Peet M (1992) Fruit cracking in tomato. Hort Technology 2(2):216–223

    Google Scholar 

  • Pesaresi P, Mizzotti C, Colombo M, Masiero S (2014) Genetic regulation and structural changes during tomato fruit development and ripening Front. Plant Sci 5:14. doi:10.3389/fpls.2014.00124

    Google Scholar 

  • Pirrello J, Regad F, Latche A, Pech JC, Bouzayen M (2009) Regulation of tomato fruit ripening. CAB Rev 4(51):1–14

    Article  Google Scholar 

  • Ruiz-May E, Rose JKC (2013) Progress toward the tomato fruit cell wall proteome. Front Plant Sci 29:7. doi:10.3389/fpls.2013.00159

    Google Scholar 

  • Schuch W, Kanczler J, Robertson D, Hobson G, Tucker G, Grierson D, Bright S, Bird C (1991) Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. Hortscience 26(12):1517–1520

    CAS  Google Scholar 

  • Sekse L (1995) Fruit cracking in sweet cherries (Prunus avium L.). Some physiological aspects-a mini review. Sci Hortic 63(3):135–141

    Article  Google Scholar 

  • Smith DL, Starrett DA, Gross KC (1998) A gene coding for tomato fruit β-Galactosidase II Is expressed during fruit ripening. Plant Physiol 117(2):417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DS (2001) Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. J Exp Bot 52(359):1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Vicente AR, Powell A, Greve LC, Labavitch JM (2007) Cell wall disassembly events in boysenberry (Rubus idaeus L. × Rubus ursinus Cham. & Schldl.) fruit development. Funct Plant Biol 34(7):614–623

    Article  CAS  Google Scholar 

  • Wang Y, Lu WJ, Li JG, Jiang Y (2006) Differential expression of two expansion genes in developing fruit of cracking-susceptible and -resistant litchi cultivars. J Am Soc Hortic Sci 131(1):118–121

    CAS  Google Scholar 

  • Wang BM, Ding GX, Wang XY, Fu CB, Qin GJ, Yang JQ, Cang GM, Wen PF (2013) Changes of histological structure and water potential of huping jujube fruit cracking. Sci Agr Sin 46(21):4558–4568

    CAS  Google Scholar 

  • Wen MX, Shi XJ (2012) Influence of calcium on fruit cracking of Jincheng orange and its physiological mechanism. Sci Agr Sin 45(6):1127–1134

    CAS  Google Scholar 

  • Wiedemann P, Neinhuis C (1998) Biomechanics of isolated plant cuticles. Bot Acta 111(1):28–34

    Article  Google Scholar 

  • Wu ZL (2012) Studies on prevention of plum fruit cracking disease. Acta Hortic Sin 39(12):2361–2368

    CAS  Google Scholar 

  • Xiao JX, Yan X, Peng SA, Fang YW (2007) Seasonal changes of mineral nutrients in fruit and leaves of ‘Newhall’and ‘Skagg’s Bonanza’navel oranges. J Plant Nutr 30(5):671–690

    Article  CAS  Google Scholar 

  • Yang WH, Zeng H, Zou MH, Lu CZ, Huang XM (2011) An overview of the roles of cell wall modification in fruit pericarp cracking. Chin J Trop Crops 32(10):1995–1999

    Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz C, Özgüven AI (2006) Hormone physiology of preharvest fruit cracking in pomegranate (Punica granatum L.). Acta Hortic 727:545–549

    Article  CAS  Google Scholar 

  • Zoffoli JP, Latorre BA, Naranjo P (2008) Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Bio Tech 47(1):90–97

    Article  CAS  Google Scholar 

  • Zou Q (2000) Experimental guiding of plant physiology. China Agriculture Press, Beijing

    Google Scholar 

Download references

Acknowledgments

We thank the Foundation Research Project of Jiangsu Province (The Natural Science Fund. BK20140712), and the Fundamental Research Funds for the Central Universities, China (KYZ201609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangling Jiang.

Additional information

Communicated by PK Nagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wu, Z., Zhang, C. et al. The composition of pericarp, cell aging, and changes in water absorption in two tomato genotypes: mechanism, factors, and potential role in fruit cracking. Acta Physiol Plant 38, 215 (2016). https://doi.org/10.1007/s11738-016-2228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2228-1

Keywords

Navigation