Skip to main content
Log in

Variations in antioxidant capacity and phenolics in leaf extracts isolated by different polarity solvents from seven blueberry (Vaccinium L.) genotypes at three phenological stages

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Antioxidant potential of blueberry leaves of seven genotypes (Vaccinium corymbosum, V. angustifolium, and hybrids) harvested at three phenological stages from three different bushes was evaluated by total phenolic content (TPC), ABTS and DPPH radical scavenging capacity, ferric reducing antioxidant power, and oxygen radical absorbance capacity (ORAC). The leaves were consecutively extracted with hexane (He), acetone (Ac), and methanol/water (Me/W). The extracts isolated with higher polarity solvents were stronger antioxidants. Remarkable variations in antioxidant capacity were observed depending on harvesting stage, genotype, and individual bushes. TPC was in the ranges of 29–143 (He), 87–312 (Ac), 85–333 (Me/W) mg GAE/g, ORAC—2633–10170 (Ac), 1517–13302 (Me/W) μmol trolox eqv/g. In general Putte, Northland and Gila genotypes demonstrated higher antioxidant capacity than Bluecrop, Dixi, Gretha, and Northblue. Phytochemical composition of selected samples was screened by UPLC/MS2; six previously not reported in blueberries leaves compounds were identified. In conclusion, this study demonstrated that blueberry leaves are a good source of natural antioxidants and valuable polyphenolic compounds, which could find various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brownmiller C, Howard LR, Prior RL (2009) Processing and storage effects on procyanidin composition and concentration of processed blueberry products. J Agric Food Chem 57:1896–1902

    Article  PubMed  CAS  Google Scholar 

  • Bunea A, Rugina DO, Pintea AM, Sconta Z, Bunea CI, Socaciu C (2011) Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not Bot Horti Agrobot ClujNapoca 39:70–76

    CAS  Google Scholar 

  • Castrejon ADR, Elchholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:564–572

    Article  CAS  Google Scholar 

  • Cheel J, Tumova L, Areche C, Van Antwerpen P, Neve J, Zouaoui-Boudjeltia K, Martin AS, Vokral I, Wsol V, Neugebauerova J (2013) Variations in the chemical profile and biological activities of licorice (Glycyrrhiza glabra L.), as influenced by harvest times. Acta Physiol Plant 35:1337–1349

    Article  CAS  Google Scholar 

  • Cho MJ, Howard LR, Prior RL, Clark JR (2004) Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 84:1771–1782

    Article  CAS  Google Scholar 

  • Cignarella A, Nastasi M, Cavalli E, Puglisi L (1996) Novel lipid-lowering properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in several models of rat dyslipidaemia: a comparison with ciprofibrate. Thromb Res 84:311–322

    Article  PubMed  CAS  Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J Sci Food Agric 79:362–372

    Article  CAS  Google Scholar 

  • Deng Y, Yang G, Yue J, Qian B, Liu Z, Wang D, Zhong Y, Zhao Y (2014) Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control 38:184–191

    Article  CAS  Google Scholar 

  • Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49:2222–2227

    Article  PubMed  CAS  Google Scholar 

  • Gavrilova V, Kajdzanoska M, Gjamovski V, Stefova M (2011) Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC–DAD–ESI–MSn. J Agric Food Chem 59:4009–4018

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli G, Buratti S (2009) Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem 112:903–908

    Article  CAS  Google Scholar 

  • Harris CS, Burt AJ, Saleem A, Le PM, Martineau LC, Haddad PS, Bennett SA, Arnason JT (2007) A single HPLC–PAD–APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem Anal 18:161–169

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  CAS  Google Scholar 

  • Hur SJ, Kim DH, Chun SC, Lee SK (2013) Antioxidative changes of blueberry leaf extracts in emulsion-type sausage during in vitro digestion. Korean J Food Sci Anim Resour 33:689–695

    Article  Google Scholar 

  • Inoue N, Nagao K, Nomura S, Shirouchi B, Inafuku M, Hirabaru H, Nakahara N, Nishizono S, Tanaka T, Yanagita T (2011) Effect of Vaccinium ashei reade leaf extracts on lipid metabolism in obese OLETF rats. Biosci Biotechnol Biochem 75:2304–2308

    Article  PubMed  CAS  Google Scholar 

  • Johnson MH, Lucius A, Meyer T, de Mejia EG (2011) Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). J Agric Food Chem 59:8923–8930

    Article  PubMed  CAS  Google Scholar 

  • Kalt W, Forney CF, Martin A, Prior RL (1999) Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J Agric Food Chem 47:4638–4644

    Article  PubMed  CAS  Google Scholar 

  • Kalt W, Ryan DAJ, Duy JC, Prior RL, Ehlenfeldt MK, van der Kloet SP (2001) Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium Section cyanococcus spp.). J Agric Food Chem 49:4761–4767

    Article  PubMed  CAS  Google Scholar 

  • Kaur T, Bhat HA, Bhat R, Kumar A, Bindu K, Koul S, Vyas D (2015) Physio-chemical and antioxidant profiling of Salvia sclarea L. at different climates in north-western Himalayas. Acta Physiol Plant 37:132

    Article  CAS  Google Scholar 

  • Kim SM, Um BH (2011) Evaluation of the antioxidant activity of phenolic compounds among blueberry cultivars by HPLC–ESI/MS and on-line HPLC–ABTS system. J Med Plants Res 5:5008–5016

    CAS  Google Scholar 

  • Kim SM, Shang YF, Um BH (2010) Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.). Phytochem Anal 21:457–462

    Article  PubMed  CAS  Google Scholar 

  • Kraujalytė V, Venskutonis PR, Pukalskas A, Česonienė L, Daubaras R (2015) Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes. Food Chem 188:583–590

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Li BX, Geng LJ (2011) Hypolipidemic and antioxidant effects of total flavonoids from blueberry leaves. Eur Food Res Technol 233:897–903

    Article  CAS  Google Scholar 

  • Li C, Feng J, Huang WY, An XT (2012) Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J Agric Food Chem 61:523–531

    Article  CAS  Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453

    Article  PubMed  Google Scholar 

  • Martineau LC, Couture A, Spoor D, Benhaddou-Andaloussi A, Harris C, Meddah B, Leduc C, Burt A, Vuong T, Le Mai P, Prentki M, Bennett SA, Arnason JT, Haddad PS (2006) Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13:612–623

    Article  PubMed  CAS  Google Scholar 

  • Matsuo Y, Fujita Y, Ohnishi S, Tanaka T, Hirabaru H, Kai T, Sakaida H, Nishizono S, Kouno I (2010) Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chem 121:1073–1079

    Article  CAS  Google Scholar 

  • Moze S, Polak T, Gasperlin L, Koron D, Vanzo A, Poklar Ulrih N, Abram V (2011) Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J Agric Food Chem 59:6998–7004

    Article  PubMed  CAS  Google Scholar 

  • Ochmian I, Grajkowski J, Skupień K (2010) Effect of substrate type on the field performance and chemical composition of highbush blueberry cv. Patriot. Agric Food Sci 19:69–80

    Article  CAS  Google Scholar 

  • Pero RW, Lund H, Leanderson T (2009) Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res 23:335–346

    Article  PubMed  CAS  Google Scholar 

  • Piljac-Žegarac J, Belščak A, Piljac A (2009) Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. J Med Food 12:608–614

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    Article  CAS  Google Scholar 

  • Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF (2001) Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using High-Performance Liquid Chromatography/Mass Spectrometry. J Agric Food Chem 49:1270–1276

    Article  PubMed  CAS  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  PubMed  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Retamales JB, Hancock JF (2012) Blueberries. Crop production science in horticulture, vol 21. CAB International, Wallingford

    Google Scholar 

  • Routray W, Orsat V (2014) Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Ind Crops Prod 62:147–155

    Article  CAS  Google Scholar 

  • Sakaida H, Nagao K, Higa K, Shirouchi B, Inoue N, Hidaka F, Kai T, Yanagita T (2007) Effect of Vaccinium ashei reade leaves on angiotensin converting enzyme activity in vitro and on systolic blood pressure of spontaneously hypertensive rats in vivo. Biosci Biotechnol Biochem 71:2335–2337

    Article  PubMed  CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M, Uto H, Tsubouchi H, Kataoka H (2009) Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem 284:21165–21176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J Agric Food Chem 52:3169–3176

    Article  PubMed  CAS  Google Scholar 

  • Vyas P, Kalidindi S, Chibrikova L, Igamberdiev AU, Weber JT (2013) Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. J Agric Food Chem 61:7769–7776

    Article  PubMed  CAS  Google Scholar 

  • Yuji K, Sakaida H, Kai T, Fukuda N, Yukizaki C, Sakai M, Tsubouchi H, Kataoka H (2013) Effect of dietary blueberry (Vaccinium ashei Reade) leaves on serum and hepatic lipid levels in rats. J Oleo Sci 62:89–96

    Article  PubMed  CAS  Google Scholar 

  • Zhu LC, Liu X, Tan J, Wang BC (2013) Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry (Vaccinium ashei) leaves. J Agric Food Chem 61:11477–11483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Council of Lithuania, Grant No. SVE-04/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petras Rimantas Venskutonis.

Additional information

Communicated by R. Aroca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venskutonis, P.R., Barnackas, Š., Kazernavičiūtė, R. et al. Variations in antioxidant capacity and phenolics in leaf extracts isolated by different polarity solvents from seven blueberry (Vaccinium L.) genotypes at three phenological stages. Acta Physiol Plant 38, 33 (2016). https://doi.org/10.1007/s11738-015-2053-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2053-y

Keywords

Navigation