Skip to main content
Log in

Stimulation of in vitro morphogenesis, antioxidant activity and over expression of kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bertoni by chlorocholine chloride

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytoconstituents from medicinal plants are considered as important source of raw materials of drugs for pharmaceutical industries. Biotechnology has become an inevitable approach in the area of research and development of medicinal plants for many decades. The present work has been carried out to ascertain the role of chlorocholine chloride (CCC) on in vitro morphogenesis, antioxidant activity and expression level of kaurenoic acid 13-hydroxylase (KA13H) gene in Stevia rebaudiana. To fulfill these purposes chlorocholine chloride was applied in the Murashige and Skoog (Physiol Plant 15(3):473–497, 1962) medium in combination with other plant growth regulators such as 1-naphthalene acetic acid, kinetin and thidiazuron. Chlorocholine chloride was found to contribute significant role on in vitro morphogenesis of S. rebaudiana as evidenced by the formation of embryogenic calli and increase in callusing and microshooting efficiency of explant, i.e., cotyledonary leaf. Moreover, antioxidant enzyme activity as well as ascorbic acid content of the calli and leaves was also stimulated after application of chlorocholine chloride. Q-PCR amplification using gene-specific primers revealed that CCC also promoted the expression level of KA13H gene in S. rebaudiana leaves. The overall study highlighted the promising role of chlorocholine chloride on regeneration efficiency of cotyledonary leaf, significant promotion in antioxidant potential and expression of KA13H gene in S. rebaudiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CCC:

Chlorocholine chloride

Hr:

Hour

Lb:

Pound

MS:

Murashige and Skoog

N :

Normality of solution

NAA:

1 Naphthalene acetic acid

NBT:

Nitroblue tetrazolium chloride

nm:

Nanometer

Q-PCR:

Quantitative polymerase chain reaction

PVP:

Polyvinyl pyrrolidone

RH:

Relative humidity

rpm:

Rotation per minute

TCA:

Trichloro acetic acid

TDZ:

Thidiazuron

UV:

Ultraviolet

w/v:

Weight by volume

v/v:

Volume by volume

References

  • Agnihotri S, Singh RR, Chaturved HC (2001) In vitro high frequency regeneration of plantlets of Vigna mungo and their ex vitro growth. Indian J Exp Biol 39:916–920

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts, scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp, Fedovich BC (1976) Superoxide dismutase assay and an assay applicable to acrylamide gel. Anal Biochem 10:276–287

    Google Scholar 

  • Bettaieb T, Laribi B, Rouatbi N, Kouki K (2012) In vitro propagation of Stevia rebaudiana (Bert.): A non caloric sweetener and antidiabetic medicinal plant. Int J Med Arom Plants 2:333–339

    Google Scholar 

  • Blackmon WJ, Reynolds BD (1982) In vitro shoot regeneration of Hibiscus acetosella, muskmelon, watermelon, winged bean. Hort Sci 17:588–589

    Google Scholar 

  • Brandle JE, Telmer P (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Dey A, Kundu S, Bandyopadhyay A, Bharracharjee A (2013a) Efficient micropropagation and chlorocholine chloride induced stevioside production of Stevia rebaudiana Bertoni. Comp Rend Biol 336:17–28

    Article  CAS  Google Scholar 

  • Dey A, Paul S, Kundu S, Bandyopadhyay A, Bhattacharjee A (2013b) Elevated antioxidant potential of chlorocholine chloride-treated in vitro grown Stevia rebaudiana Bertoni. Acta Physiol Plant 35:1775–1783

    Article  CAS  Google Scholar 

  • Felippe GM, Lucas NMC, Behar L, Oliveira MAC (1971) Observacoes a respeito de germinacao de Stevia rebaudiana. Bert Hoehnea 1:81–93

    Google Scholar 

  • Fu CX, Zhao DX, Huang Y (2005) Cellular aggregate size as the critical factor for flavonoid production by suspension cultures of Saussurea medusa. Biotechnol Lett 27:91–95

    Article  PubMed  CAS  Google Scholar 

  • Ghanta S, Banerjee A, Poddar A, Chattopadhyay S (2007) Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana Bertoni, a natural sweetener. J Agr Food Chem 55:10962–10967

    Article  CAS  Google Scholar 

  • Graebe JE (1987) Gibberellin biosynthesis and control. Ann Rev Plant Physiol 38:419–465

    Article  CAS  Google Scholar 

  • Hossain T et al (2010) In vitro bulb production in Hippeastrum (Hippeastrum hybridum). J Cent Eur Agric 11(4):469–474

    Article  Google Scholar 

  • Ievinsh G, Inguna G, Kruzmane D (2002) Effect of CCC and pH on shoot elongation in Sedum rubrotinctum R.T. Clausen. Plant Sci 163:647–651

    Article  Google Scholar 

  • Jeppensen PB, Gregerson S, Poulsen CR, Harmansen K (2002) Stevioside induces antihyperglycemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic goto- kakizaki (gk) rats. Phytomedicine 9:9–14

    Article  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim KK, Sawa Y, Shibata H (1996) Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni: purification and partial characterization of the enzyme. Arch Biochem Biophys 332:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kozak D, Grodek J (2005) The consequent effect of growth retardants on the growth and development of Tibouchina urvilleana Cogn. shoots in vitro. Acta Sci Pol Hortorum Cultus 4(2):123–128

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of realtive gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

  • Mendoza AB, Hattori K, Nishimura T, Fustuhara Y (1993) Histological and scanning electron microscopic observations on plant regeneration in mungbean (Vigna radiata (L.) Wilczek) culture in vitro. Plant Cell Tiss Org Cult 32:137–143

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nagy M, Tari I (1986) Ethylene production and IAA distribution in bean hypocotyls treated with CCC. Biochem Physiol Pflanzen 181:611–614

    Article  CAS  Google Scholar 

  • Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Method Enzymol 62:3–11

    Article  CAS  Google Scholar 

  • Ramachandra SR, Ravishankar GA (2002) Plant cell cultures, chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-radiation and ozone-induced biochemical changes in the antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakaguchi M, Kan T (1982) Japanese researches on Stevia rebaudiana (Bert.) Bertoni and stevioside. Ci Cult 34:235–248

    CAS  Google Scholar 

  • Shao HB, Chu LY, Zhao HL, Kang C (2008) Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. Int J Biol Sci 4(1):8–14

    Article  CAS  PubMed Central  Google Scholar 

  • Shibata H, Sawa Y, Oka T, Sonoke S, Kim KK, Yoshioka M (1995) Steviol and steviol-glycoside—glucosyltransferase activities in Stevia rebaudiana Bertoni—purification and partial characterization. Arch Biochem Biophys 321:390–396

    Article  PubMed  CAS  Google Scholar 

  • Sivaram L, Mukundan U (2003) In vitro culture studies on Stevia rebaudiana. In Vitro Cell Dev Biol Plant 39:520–523

    Article  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plant. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Snell FD, Snell CT (1971) Colorimetric methods of analysis. Van Nostrand Reinhold Co., New York, pp 7–145

    Google Scholar 

  • Starratt AN, Kirby CW, Pocs R, Brandle JE (2002) Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry 59:367–370

  • Totté N, Charon L, Rohmer M, Compernolle F, Baboeuf I, Geuns JMC (2000) Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetrahedron Lett 41:6407–6410

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their supervisor for valuable and constructive suggestions. Authors also express their thankfulness to the Head, Department of Botany, University of Burdwan for providing laboratory and infrastructure facilities. Authors are also grateful to Dr. Anupam Basu, Associate Professor and Head of the Department, Department of Zoology, University of Burdwan for his assistance in Q-PCR analysis. Financial support in form of fellowship from Government of West Bengal, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay.

Additional information

Communicated by A. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Dey, A. & Bandyopadhyay, A. Stimulation of in vitro morphogenesis, antioxidant activity and over expression of kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bertoni by chlorocholine chloride. Acta Physiol Plant 36, 2683–2693 (2014). https://doi.org/10.1007/s11738-014-1639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1639-0

Keywords

Navigation