Skip to main content

Advertisement

Log in

Effects of acupuncture on neuro-electrophysiological activities in hippocampal CA1 and CA3 areas of rats with post-traumatic stress disorder

针刺对创伤后应激障碍模型大鼠海马CA1和CA3区神经电生理活动的影响

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To observe the effects of acupuncture on the characteristics of neuro-electrophysiological activity in hippocampal CA1 and CA3 areas of rats with post-traumatic stress disorder (PTSD).

Methods

Fifty Sprague-Dawley (SD) rats were randomly divided into a blank group, a model group, a grasping group, a Western medicine group and an acupuncture group, with 10 rats in each group. Except for the blank group, rats in the other 4 groups all received the combined stress modeling method. Rats in the Western medicine group were intragastrically administrated with paroxetine hydrochloride, those in the acupuncture group received acupuncture intervention, those in the grasping group received grasping fixation, and those in the model group and the blank group did not receive any interventions. After 14 d of intervention, the interspike interval (ISI) and power spectral densities (PSD) were analyzed and mapped by in vivo multiple channels to record the neuron clusters discharge in the hippocampal CA1 and CA3 areas.

Results

Compared with the blank group, ISI was prolonged in the CA1 and CA3 areas of the model group and the grasping group, and the concentrated PSD distribution area moved down (P<0.05 or P<0.01). Compared with the grasping group, the ISI of the CA1 and CA3 areas in the Western medicine group and the acupuncture group was shortened, and the concentrated PSD distribution area moved up (P<0.05 or P<0.01). The ISI and PSD distributions in the CA1 and CA3 areas of the acupuncture group were not statistically different from those in the Western medicine group (both P>0.05).

Conclusion

Both acupuncture and paroxetine hydrochloride can significantly regulate the neuro-electrophysiology activity of hippocampal CA1 and CA3 areas in PTSD rats, which may be one of the mechanisms of acupuncture intervention to promote PTSD recovery.

概要

目的

观察毫针针刺对创伤后应激障碍(PTSD)模型大鼠海马 CA1 和 CA3 区神经电生理活动特征量的影响。

方法

将 50 只 Sprague-Dawley (SD) 大鼠随机分为空白组、 模型组、 抓取组、 西药组和针刺组, 每组 10 只。 除空 白组外, 其他 4 组大鼠以复合应激法造模。 造模同时西药组予以盐酸帕罗西汀灌胃, 针刺组接受针刺干预, 抓取组接受抓取固定, 模型组和空白组不接受任何干预。 干预 14 d 后, 通过在体多通道记录海马 CA1 和 CA3 区神经元集群放电, 分析峰-峰间期(ISI)和功率谱密度(PSD)并绘图。

结果

与空白组比较, 模型组和抓取组 CA1 和 CA3 区 ISI 延长, PSD 集中分布区域下移(P<0.05 或P<0.01); 与抓取组比较, 西药组和针刺组 CA1 和 CA3 区 ISI 缩短, PSD 集中分布区域上移(P<0.05 或P<0.01); 针刺组 CA1 和 CA3 区的 ISI 和 PSD 集中分布区域与西药组无统计学差异(均 P>0.05)。

结论

毫针针刺与盐酸帕罗西汀干预均可显著调节 PTSD 模型大鼠海马 CA1 和 CA3 区神经电生理活动特征量发放模式, 可能是针灸干预促进PTSD 恢复的机制之一。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beehner JC, Bergman TJ. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Mol Pharmacol, 2017, 91: 68–83.

    CAS  Google Scholar 

  2. Sripada RK, Rauch SA, Liberzon I. Psychological mechanisms of PTSD and its treatment. Curr Psychiatry Rep, 2016, 18(11): 99.

    Article  PubMed  Google Scholar 

  3. Koek RJ, Schwartz HN, Scully S, Langevin JP, Spangler S, Korotinsky A, Jou K, Leuchter A. Treatment-refractory posttraumatic stress disorder (TRPTSD): a review and framework for the future. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 70: 170–218.

    Article  PubMed  Google Scholar 

  4. Zhang Y, Qiu CJ, Tang XD, Zhang W. Neurobiology characterization of sleep disorders in patients with posttraumatic stress disorder. Guoji Jingshenbingxue Zazhi, 2015, 42(2): 123–125.

    CAS  Google Scholar 

  5. Harris AP, Holmes MC, de Kloet ER, Chapman KE, Seckl JR. Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behavior. Psychoneuroendocrinology, 2013, 38(5): 648–658.

    Article  CAS  PubMed  Google Scholar 

  6. Kozlovsky N, Zohar J, Kaplan Z, Cohen H. Microinfusion of a corticotrophin-releasing hormone receptor 1 antisense oligodeoxynucleotide into the dorsal hippocampus attenuates stress responses at specific times after stress exposure. Neuroendocrinol, 2012, 24(3): 489–503.

    Article  CAS  Google Scholar 

  7. Guo Y. Experimental Acupuncture Science. Beijing: China Press of Traditional Chinese Medicine, 2016: 327–329.

    Google Scholar 

  8. Zhao ZX, Wu YM. Establishment of a new rat model of posttraumatic stress disorder and its behavior test. Disan Junyi Daxue Xuebao, 2012, 34(10): 928–931.

    Google Scholar 

  9. George P, Charise W. The Rat Brain in Stereotaxic Coordinates. London: Elsevier Inc, 2007: 47–81.

    Google Scholar 

  10. Gao J. The Study of Information Coding of Intrusive Memory in Posttraumatic Stress Disorder and Its Potential Pathological Mechanism. Chongqing: Doctor Thesis of Disan Junyi Daxue, 2011: 18, 69–73.

    Google Scholar 

  11. Strawn JR, Geracioti TD Jr. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress Anxiety, 2008, 25(3): 260–271.

    Article  CAS  PubMed  Google Scholar 

  12. Tian YE, Li M. Research progress in hippocampus and post-traumatic stress disorder. Zhongguo Xingwei Yixue Kexue, 2007, 16(6): 571–572.

    Google Scholar 

  13. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 2000, 97(2): 253–266.

    Article  CAS  PubMed  Google Scholar 

  14. Wang J. Novel Analysis Methods for Multi-channel Spike Signals and Their Applications in the Investigation of Neuronal Firing Features in Rat Hippocampus. Hangzhou: Doctor Thesis of Zhejiang University, 2011: 49.

    Google Scholar 

  15. Feng ZY, Guang L, Zheng XJ, Wang J, Li SH. Recordings of the hippocampal field potentials and unit activity by using linear silicon electrode array. Shengwu Huaxue Yu Shengwu Wuli Jinzhan, 2007, 34(4): 401–407.

    Google Scholar 

  16. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 2010, 464(7290): 903–907.

    Article  CAS  PubMed  Google Scholar 

  17. Brown EN, Kass RE, Mitra PP. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci, 2004, 7(5): 456–461.

    Article  CAS  PubMed  Google Scholar 

  18. Wang JY, Luo F, Han JS. In vivo multi-channel recording methods for central neural activities. Shengli Kexue Jinzhan, 2003, 34(4): 356–358.

    Google Scholar 

  19. Yang WJ. A Study of Coding Working Memory-event via Time-varying Spectrum Coherence on Multi-channel LFPs-Spikes. Tianjin: Master Thesis of Tianjin Medical University, 2010: 1.

    Google Scholar 

  20. Xu J, Wu T, Liu WT, Yang Z. A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range. IEEE Trans Biomed Circuits Syst, 2014, 8(4): 510–527.

    Article  PubMed  Google Scholar 

  21. Sun L. Acupuncture Characterization Based on the Electrical Signal. Tianjin: Doctor Thesis of Tianjin University, 2008: 1–5.

    Google Scholar 

  22. MacLeod K, Bäcker A, Laurent G. Who reads temporal information contained across synchronized and oscillatory spike trains? Nature, 1998, 395(6703): 693–698.

    Article  CAS  PubMed  Google Scholar 

  23. Xu JM, Wang CQ, Lin LN. Multi-channel in vivo recording techniques: signal processing of action potentials and local field potentials. Shengli Xuebao, 2014, 66(3): 354–355.

    Google Scholar 

Download references

Acknowledgments

This work was supported by No. 62 General Project of China Postdoctoral Science Foundation (中国博士后科学 基金第62 批面上项目, No. 2017M623269); 2014 Regional Science Fund of National Natural Science Foundation of China (2014 年度国家自然科学基金地区 项目, No. 81460744); 2013 Natural Science Foundation of Gansu Province (2013 年度甘肃省自然科学研究基金计 划项目, No. 1308RJZA150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-ke Yan  (严兴科).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Zt., Zhao, Yk., Zhu, Tt. et al. Effects of acupuncture on neuro-electrophysiological activities in hippocampal CA1 and CA3 areas of rats with post-traumatic stress disorder. J. Acupunct. Tuina. Sci. 17, 67–73 (2019). https://doi.org/10.1007/s11726-019-1095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-019-1095-x

Keywords

关键词

中图分类号

文献标志码

Navigation