Skip to main content
Log in

Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Quasi-rectangular shield tunneling is a cutting-edge trenchless method for constructing metro tunnels with double tubes, owing to its advantages in saving underground space and reducing ground disturbance. However, the conventional quasi-rectangular shield tunneling method is not applicable when constructing a tunnel without a center pillar, such as a scissor crossover section of a metro line. Therefore, the 0-θ tunneling method, which combines the quasi-rectangular shield and pipe jacking methods, was investigated in this study to solve the aforementioned construction challenges. This study presents a case study of the Sijiqing Station of the Hangzhou Metro Line 9 in China, in which the 0-θ method was first proposed and applied. Key techniques such as switching between two types of tunneling modes and the tunneling process control in complex construction environments were investigated. The results demonstrated that the 0-θ method can address the technical challenges presented by the post-transition line with a high curvature and a scissors crossover line. In addition, the adoption of the 0-θ method ensured that the transformation between shield tunneling and pipe jacking was safe and efficient. The ground settlement monitoring results demonstrated that the disturbance to the surrounding environment can be limited to a safe level. This case study contributes to the construction technology for a metro tunnel containing both post-transition lines with a small turning radius and a scissors crossover line. A practical construction experience and theoretical guidance were provided in this study, which are of significance for both the industry and academia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaliampakos D, Benardos A. Underground space development: Setting modern strategies. WIT Transactions on the Built Environment, 2008, 102: 1–10

    Google Scholar 

  2. Zhao J, Peng F, Wang T, Zhang X, Jiang B. Advances in master planning of urban underground space (UUS) in China. Tunnelling and Underground Space Technology, 2016, 55: 290–307

    Article  Google Scholar 

  3. Hunt D V L, Makana L O, Jefferson I, Rogers C D F. Liveable cities and urban underground space. Tunnelling and Underground Space Technology, 2016, 55: 8–20

    Article  Google Scholar 

  4. He C, Feng K, Fang Y. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method. Journal of Southwest Jiaotong University, 2015, 50(1): 97–109

    Google Scholar 

  5. Wang J, Wang K, Zhang T, Wang S. Key aspects of a DN4000 steel pipe jacking project in China: A case study of a water pipeline in the Shanghai Huangpu River. Tunnelling and Underground Space Technology, 2018, 72: 323–332

    Article  Google Scholar 

  6. Deng Z, Liu X, Zhou X, Yang Q, Chen P, de la Fuente A, Ren L, Du L, Han Y, Xiong F, Yan R. Main engineering problems and countermeasures in ultra-long-distance rock pipe jacking project: Water pipeline case study in Chongqing. Tunnelling and Underground Space Technology, 2022, 123: 104420

    Article  Google Scholar 

  7. Zhang Z G, Fang L, Ma S K, Lv X L, Shi M Z, Lu Y H. Model test study on ground settlement caused by excavation of quasi-rectangular tunnels in soft soils. Modern Tunnelling Technology, 2020, 57(S1): 762–771

    Google Scholar 

  8. Liu X, Liu Z, Yuan Y, Zhu Y. Quasi-rectangular shield tunneling technology in the Ningbo Rail Transit Project. In: Proceedings of the 2017 fib Symposiumt. Maastricht: Springer, 2018

    Google Scholar 

  9. Zhu Y H, Zhu Y F, Huang D, Li P. Development and application of the technical system for quasi-rectangular shield tunneling. Modern Tunnelling Technology, 2016, 53(S1): 1–122

    Google Scholar 

  10. Zhang X, Chen J, Bai Y, Chen A, Huang D. Ground surface deformation induced by quasi-rectangle EPB shield tunneling. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 317–324

    Article  Google Scholar 

  11. Chen A, Zhang X, Bai Y, Huang D, Huang Y. Analysis of the superimposed stress of soil layer induced by quasi rectangle EPB shield tunneling. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1813–1819

    Google Scholar 

  12. Si J, Zhu Y, Ji C, Zhou S. Measurement and analysis of vertical deformation of stratum induced by quasi-rectangular shield tunneling in soft ground. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1551–1559

    Google Scholar 

  13. Qiu B. Contrastive analysis of surface subsidence deformation law between quasi-rectangular shield and double-circular shield. Urban Geotechnical Investigation & Surveying, 2018, 168(6): 173–176

    Google Scholar 

  14. Shou K, Jiang J. A study of jacking force for a curved pipe jacking. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 298–304

    Google Scholar 

  15. Ma P, Shimada H, Sasaoka T, Hamanaka A, Moses D N, Dintwe T K, Huang S. A new method for predicting the friction resistance in rectangular pipe-jacking. Tunnelling and Underground Space Technology, 2022, 123: 104338

    Article  Google Scholar 

  16. Chen P, Liu X, Deng Z, Liang N, Du L, Du H, Yang G. Study on the pipe friction resistance in long-distance rock pipe jacking engineering. Underground Space, 2022, 9: 173–185

    Article  Google Scholar 

  17. Chen S. Research on receiving construction technology of the quasi-rectangular shield with super shallow overburden. Modern Tunnelling Technology, 2020, 57(S1): 963–968

    MathSciNet  Google Scholar 

  18. Zhu Y F, Zhu Y H, Huang D, Yang Z. New type of single tunnel and double line tunnel for rail transit-quasi-rectangular shield tunnel. Tunnel and Rail Transit, 2019, 126(S2): 18–26

    Google Scholar 

  19. Zhang Z, Huang A, Wang C. Study on the construction scheme of quasi-rectangular metro station in soft soil area constructed by pipe jacking method. Modern Tunnelling Technology, 2018, 55(S2): 397–403

    Google Scholar 

  20. Zhang S, Cheng X, Qi L, Zhou X. Face stability analysis of large diameter shield tunnel in soft clay considering high water pressure seepage. Ocean Engineering, 2022, 253: 111283

    Article  Google Scholar 

  21. Jiang X, Zhang X, Wang S, Bai Y, Huang B. Case study of the largest concrete earth pressure balance pipe-jacking project in the world. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(7): 92–105

    Article  Google Scholar 

  22. Zhang W, Liu X, Liu Z, Zhu Y, Huang Y, Taerwe L, De Corte W. Investigation of the pressure distributions around quasi-rectangular shield tunnels in soft soils with a sh allow overburden: A field study. Tunnelling and Underground Space Technology, 2022, 130: 104742

    Article  Google Scholar 

  23. Wu D, Zhao H, Shen H. Bending performance of the steel longitudinal joint for quasi-rectangular pipe-jacking tunnels. Journal of Pipeline Systems Engineering and Practice, 2022, 13(3): 04022026

    Article  Google Scholar 

  24. Yang Y, Liao S, Liu M, Wu D, Pan W, Li H. A new construction method for metro stations in dense urban areas in Shanghai soft ground: Open-cut shafts combined with quasi-rectangular jacking boxes. Tunnelling and Underground Space Technology, 2022, 125: 104530

    Article  Google Scholar 

  25. Zhang F, Kou X, Huang J. Application of peck formula and its modified versions in ground settlement prediction during quasi-rectangular tunnelling. Modern Tunnelling Technology, 2016, 53(S1): 195–200

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Social Development Project of Science and Technology Commission of Shanghai Municipality (No. 21DZ1201105), the Fundamental Research Funds for the Central Universities (No. 21D111320), and the National Natural Science Foundation of China (Grant No. 42201489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Jiang.

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, X., Jiang, X. et al. Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method. Front. Struct. Civ. Eng. 17, 1707–1722 (2023). https://doi.org/10.1007/s11709-023-0991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-023-0991-9

Keywords

Navigation