Skip to main content
Log in

Variational mode decomposition based modal parameter identification in civil engineering

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanthakumar S S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    Article  MathSciNet  Google Scholar 

  2. Nanthakumar S S, Valizadeh N, Park H S, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112

    Article  MathSciNet  MATH  Google Scholar 

  3. Xia P Q, Brownjohn J M. Bridge structural condition assessment using systematically validated finite-element model. Journal of Bridge Engineering, 2004, 9(5): 418–423

    Article  Google Scholar 

  4. Chang K C, Kim C W. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Engineering Structures, 2016, 122: 156–173

    Article  Google Scholar 

  5. Shahdin A, Mezeix L, Bouvet C, Morlier J, Gourinat Y. Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams. Engineering Structures, 2009, 31(12): 2833–2841

    Article  Google Scholar 

  6. Zhang M J, Xu F Y, Ying X Y. Experimental investigations on the nonlinear torsional flutter of a bridge deck. Journal of Bridge Engineering, 2017, 22(8): 04017048

    Article  Google Scholar 

  7. Xue K, Igarashi A, Kachi T. Optimal sensor placement for active control of floor vibration considering spillover effect associated with modal filtering. Engineering Structures, 2018, 165: 198–209

    Article  Google Scholar 

  8. Yang S, Allen M S. Output-only modal analysis using continuous-scan laser Doppler vibrometry and application to a 20 kW wind turbine. Mechanical Systems and Signal Processing, 2012, 31: 228–245

    Article  Google Scholar 

  9. Bagheri A, Ozbulut O E, Harris D K. Structural system identification based on variational mode decomposition. Journal of Sound and Vibration, 2018, 417: 182–197

    Article  Google Scholar 

  10. Bendat J S, Piersol A G. Engineering Applications of Correlation and Spectral Analysis. New York: John Wiley & Sons, 1993

    MATH  Google Scholar 

  11. Brincker R, Zhang L, Andersen P. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, 2001, 10(3): 441–445

    Article  Google Scholar 

  12. Jacobsen N J, Andersen P, Brincker R. Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis. In: Proceedings of the International rational Modal Analysis Conference, 2006. Leuven: 2006, 18–20

    Google Scholar 

  13. Zhang L, Wang Y, Tamura T. A frequency-spatial domain decomposition (FSDD) method for operational modal analysis. Mechanical Systems and Signal Processing, 2010, 24(5): 1227–1239

    Article  Google Scholar 

  14. Ibrahim S R. Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 1977, 14(11): 696–700

    Article  Google Scholar 

  15. Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameters identification and model reduction. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620–627

    Article  MATH  Google Scholar 

  16. Gautier P E, Gontier C, Smail M. Robustness of an ARMA identification method for modal analysis of mechanical systems in the presence of noise. Journal of Sound and Vibration, 1995, 179(2): 227–242

    Article  Google Scholar 

  17. Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: A review. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 659–667

    Article  Google Scholar 

  18. Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 1993, 25(1): 539–575

    Article  MathSciNet  Google Scholar 

  19. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  20. Hamdia K M, Ghasemi H, Zhuang X, Alajlan N, Rabczuk T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Method Appl Me, 2018, 337: 95–109

    Article  MathSciNet  Google Scholar 

  21. Hamdia K M, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227

    Article  Google Scholar 

  22. Kijewski T, Kareem A. Wavelet transforms for system identification in civil engineering. Comput-Aided Civ Inf, 2003, 18(5): 339–355

    Article  Google Scholar 

  23. Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, Series A, 1998, 454: 903–95

    Article  MathSciNet  MATH  Google Scholar 

  24. Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 2003, 8–11

    Google Scholar 

  25. Yang J N, Lei Y, Pan S, Huang N. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthquake Engineering & Structural Dynamics, 2003, 32(9): 1443–1467

    Article  Google Scholar 

  26. Yang J N, Lei Y, Pan S, Huang N. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes. Earthquake Engineering & Structural Dynamics, 2003, 32(10): 1533–1554

    Article  Google Scholar 

  27. Chen J, Xu Y L, Zhang R C. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 805–827

    Article  Google Scholar 

  28. Pines D, Salvino L. Structural health monitoring using empirical mode decomposition and the Hilbert phase. Journal of Sound and Vibration, 2006, 294(1–2): 97–124

    Article  Google Scholar 

  29. He X H, Hua X G, Chen Z Q, Huang F L. EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Engineering Structures, 2011, 33(4): 1348–1356

    Article  Google Scholar 

  30. Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method. Journal of Applied Mechanics, 2007, 74(2): 223–230

    Article  MATH  Google Scholar 

  31. Bao C, Hao H, Li Z X, Zhu X. Time-varying system identification using a newly improved HHT algorithm. Computers & Structures, 2009, 87(23–24): 1611–1623

    Google Scholar 

  32. Peng Z K, Peter W T, Chu F L. An improved Hilbert-Huang transform and its application in vibration signal analysis. J Sound Vib 2005; 23; (1–2): 187–205

    Article  Google Scholar 

  33. Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers. IEEE Transactions on Signal Processing, 2008, 56(1): 85–95

    Article  MathSciNet  MATH  Google Scholar 

  34. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544

    Article  MathSciNet  MATH  Google Scholar 

  35. Xue Y J, Cao J X, Wang D X, Du H K, Yao Y. Application of the variational mode decomposition for seismic time-frequency analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821–3831

    Article  Google Scholar 

  36. Poornachandran P, Athira S, Harikumar K. Recursive variational mode decomposition algorithm for real time power signal decomposition. Procedia Technology, 2015, 21: 540–546

    Article  Google Scholar 

  37. Upadhyay A, Pachori R B. Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition. Journal Franklin I, 2015, 352(7): 2679–2707

    Article  MATH  Google Scholar 

  38. Wang Y, Markert R, Xiang J, Zheng W. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mechanical Systems and Signal Processing, 2015, 60–61: 243–251

    Article  Google Scholar 

  39. Zheng J D, Cheng J S, Yang Y. A new instantaneous frequency estimation approach-empirical envelope method. Journal of Vibration and Shock, 2012, 31(17): 86–90 (in Chinese)

    Google Scholar 

  40. Hestenes M R. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 1969, 4(5): 303–320

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu Y, Yang G, Li M, Yin H. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Processing, 2016, 125: 349–364

    Article  Google Scholar 

  42. Clough R W, Penzien J. Dynamics of Structures. Berkeley: Computers & Structures Inc, 2003

    MATH  Google Scholar 

  43. Bedrosian E A. Product theorem for Hilbert transforms. Proceedings of the IEEE, 1963, 51(5): 868–869

    Article  Google Scholar 

  44. Nuttall A H, Bedrosian E. On the quadrature approximation to the Hilbert transform of modulated signals. Proceedings of the IEEE, 1966, 54(10): 1458–1459

    Article  Google Scholar 

  45. Huang N E, Wu Z H, Long S R, Arnold K C, Chen X Y, Blank K. On instantaneous frequency. Advances in Adaptive Data Analysis, 2009, 1(2): 177–229

    Article  MathSciNet  Google Scholar 

  46. Siringoringo D M, Fujino Y. System identification of suspension bridge from ambient vibration response. Engineering Structures, 2008, 30(2): 462–477

    Article  Google Scholar 

  47. Zhang M J, Xu F Y. Nonlinear vibration characteristics of bridge deck section models in still air. Journal of Bridge Engineering, 2018, 23(9): 04018059

    Article  Google Scholar 

  48. Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. Journal of Fluids Engineering, 1983, 105(2): 225–229

    Article  Google Scholar 

  49. Knapp J, Altmann E, Niemann J, Werner K D. Measurement of shock events by means of strain gauges and accelerometers. Measurement, 1998, 24(2): 87–96

    Article  Google Scholar 

  50. Acar C, Shkel A M. Experimental evaluation and comparative analysis ofcommercial variable-capacitance MEMS accelerometers. Journal of Micromechanics and Microengineering, 2003, 13(5): 634–645

    Article  Google Scholar 

Download references

Acknowledgements

The research is jointly supported by the Fundamental Research Funds for the Central Universities (No. DUT17ZD228), National Program on Key Basic Research Project (973 Program, No. 2015CB057705), and National Natural Science Foundation of China (Grant No. 51478087), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyou Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xu, F. Variational mode decomposition based modal parameter identification in civil engineering. Front. Struct. Civ. Eng. 13, 1082–1094 (2019). https://doi.org/10.1007/s11709-019-0537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0537-3

Keywords

Navigation