Skip to main content
Log in

Adaptive simulation of wave propagation problems including dislocation sources and random media

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

An adaptive Tikhonov regularization is integrated with an h-adaptive grid-based scheme for simulation of elastodynamic problems, involving seismic sources with discontinuous solutions and random media. The Tikhonov method is adapted by a newly-proposed detector based on the MINMOD limiters and the grids are adapted by the multiresolution analysis (MRA) via interpolation wavelets. Hence, both small and large magnitude physical waves are preserved by the adaptive estimations on non-uniform grids. Due to developing of non-dissipative spurious oscillations, numerical stability is guaranteed by the Tikhonov regularization acting as a post-processor on irregular grids. To preserve waves of small magnitudes, an adaptive regularization is utilized: using of smaller amount of smoothing for small magnitude waves. This adaptive smoothing guarantees also solution stability without over smoothing phenomenon in stochastic media. Proper distinguishing between noise and small physical waves are challenging due to existence of spurious oscillations in numerical simulations. This identification is performed in this study by the MINMOD limiter based algorithm. Finally, efficiency of the proposed concept is verified by: 1) three benchmarks of one-dimensional (1-D) wave propagation problems; 2) P-SV point sources and rupturing line-source including a bounded fault zone with stochastic material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Day S M, Dalguer L A, Lapusta N, Liu Y. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research. Solid Earth, 2005, 110(B12): B12307

    Google Scholar 

  2. Dalguer L A, Day S M. Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bulletin of the Seismological Society of America, 2006, 96(5): 1764–1778

    Google Scholar 

  3. Dalguer L A, Day S M. Staggered-grid split-node method for spontaneous rupture simulation. Journal of Geophysical Research. Solid Earth, 2007, 112: B02302

    Google Scholar 

  4. Day A, Steven M. Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity. Bulletin of the Seismological Society of America, 1982, 72: 705–727

    Google Scholar 

  5. Madariaga R, Olsen K, Archuleta R. Modeling dynamic rupture in a 3D earthquake fault model. Bulletin of the Seismological Society of America, 1998, 88: 1182–1197

    Google Scholar 

  6. Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M. Finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Physica Slovaca, 2007, 57(2): 177–406

    Google Scholar 

  7. Duan B, Day S M. Inelastic strain distribution and seismic radiation from rupture of a fault kink. Journal of Geophysical Research. Solid Earth, 2008, 113(B12): B12311

    Google Scholar 

  8. Galis M, Moczo P, Kristek J A. 3-D hybrid finite-difference—finite-element viscoelastic modelling of seismic wave motion. Geophysical Journal International, 2008, 175(1): 153–184

    Google Scholar 

  9. Barall M. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophysical Journal International, 2009, 178(2): 845–859

    Google Scholar 

  10. Ely G P, Day S M, Minster J B. A support-operator method for 3-D rupture dynamics. Geophysical Journal International, 2009, 177(3): 1140–1150

    Google Scholar 

  11. Aagaard B T, Heaton T H, Hall J F. Dynamic earthquake ruptures in the presence of lithostatic normal stresses: Implications for friction models and heat production. Bulletin of the Seismological Society of America, 2001, 91(6): 1756–1796

    Google Scholar 

  12. Kaneko Y, Lapusta N, Ampuero J P. Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths. Journal of Geophysical Research. Solid Earth, 2008, 113: B09317

    Google Scholar 

  13. Kaneko Y, Ampuero J P, Lapusta N. Spectral-element simulations of long-term fault slip: Effect of low-rigidity layers on earthquake-cycle dynamics. Journal of Geophysical Research. Solid Earth, 2011, 116(B10): B10313

    Google Scholar 

  14. Galvez P, Ampuero J P, Dalguer L A, Somala S N, Nissen-Meyer T. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophysical Journal International, 2014, 198(2): 1222–1240

    Google Scholar 

  15. Tada T, Madariaga R. Dynamic modelling of the flat 2-D crack by a semi-analytic BIEM scheme. International Journal for Numerical Methods in Engineering, 2001, 50(1): 227–251

    MATH  Google Scholar 

  16. Lapusta N, Rice J R, Ben-Zion Y, Zheng G. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research. Solid Earth, 2000, 105(B10): 23765–23789

    Google Scholar 

  17. Andrews D J. Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bulletin of the Seismological Society of America, 1985, 75: 1–21

    Google Scholar 

  18. Das S. A numerical method for determination of source time functions for general three-dimensional rupture propagation. Geophysical Journal International, 1980, 62(3): 591–604

    MATH  Google Scholar 

  19. Benjemaa M, Glinsky-Olivier N, Cruz-Atienza V M, Virieux J, Piperno S. Dynamic non-planar crack rupture by a finite volume method. Geophysical Journal International, 2007, 171(1): 271–285

    Google Scholar 

  20. Benjemaa M, Glinsky-Olivier N, Cruz-Atienza V M, Virieux J. 3-D dynamic rupture simulations by a finite volume method. Geophysical Journal International, 2009, 178(1): 541–560

    Google Scholar 

  21. Dumbser M, Käser M, De La Puente J. Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D. Geophysical Journal International, 2007, 171(2): 665–694

    Google Scholar 

  22. Dumbser M, Käser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case. Geophysical Journal International, 2006, 167(1): 319–336

    Google Scholar 

  23. Titarev V A, Toro E F. ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing, 2002, 17(1/4): 609–618

    MathSciNet  MATH  Google Scholar 

  24. Käser M, Dumbser M. An Arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — I. The two-dimensional isotropic case with external source terms. Geophysical Journal International, 2006, 166(2): 855–877

    Google Scholar 

  25. Harten A. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Communications on Pure and Applied Mathematics, 1995, 48(12): 1305–1342

    MathSciNet  MATH  Google Scholar 

  26. Cohen A, Kaber S M, Muller S, Postel M. Fully Adaptive multiresolution finite volume schemes for conservation laws. Mathematics of Computation, 2001, 72(241): 183–226

    MathSciNet  MATH  Google Scholar 

  27. Müller S. Adaptive Multiscale Schemes for Conservation Laws. Berlin: Springer, 2003

    MATH  Google Scholar 

  28. Reinsch C H. Smoothing by spline functions. Numerische Mathematik, 1967, 10(3): 177–183

    MathSciNet  MATH  Google Scholar 

  29. Reinsch C H. Smoothing by spline functions. II. Numerische Mathematik, 1971, 16(5): 451–454

    MathSciNet  MATH  Google Scholar 

  30. Unser M. Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 1999, 16(6): 22–38

    Google Scholar 

  31. Ragozin D L. Error bounds for derivative estimates based on spline smoothing of exact or noisy data. Journal of Approximation Theory, 1983, 37(4): 335–355

    MathSciNet  MATH  Google Scholar 

  32. Loader C. Smoothing: Local Regression Techniques. In: Gentle J E, Härdle W K, Mori Y, eds. Handbook of Computational Statistics. Berlin Heidelberg: Springer, 2012, 571–96

    Google Scholar 

  33. Hutchinson M F, de Hoog F R. Smoothing noisy data with spline functions. Numerische Mathematik, 1985, 47(1): 99–106

    MathSciNet  MATH  Google Scholar 

  34. Yousefi H, Ghorashi S S, Rabczuk T. Directly simulation of second order hyperbolic systems in second order form via the regularization concept. Communications in Computational Physics, 2016, 20(1): 86–135

    MathSciNet  MATH  Google Scholar 

  35. Hansen P C. Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion. Society for Industrial and Applied Mathematics, 1998

  36. Petrov Y P, Sizikov V S. Well-Posed, Ill-Posed, and Intermediate Problems with Applications. Leiden: Koninklijke Brill NV, 2005

    MATH  Google Scholar 

  37. Li X D, Wiberg N E. Structural dynamic analysis by a time-discontinuous Galerkin finite element method. International Journal for Numerical Methods in Engineering, 1996, 39(12): 2131–2152

    MathSciNet  MATH  Google Scholar 

  38. Youn S K, Park S H. A new direct higher-order Taylor-Galerkin finite element method. Computers & Structures, 1995, 56(4): 651–656

    MathSciNet  MATH  Google Scholar 

  39. Hilber H M, Hughes T J R, Taylor R L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 283–292

    Google Scholar 

  40. Alves M A, Cruz P, Mendes A, Magalhäes F D, Pinho F T, Oliveira P J. Adaptive multiresolution approach for solution of hyperbolic PDEs. Computer Methods in Applied Mechanics and Engineering, 2002, 191(36): 3909–3928

    MATH  Google Scholar 

  41. Cruz P, Mendes A, Magalhães F D. Using wavelets for solving PDEs: An adaptive collocation method. Chemical Engineering Science, 2001, 56(10): 3305–3309

    Google Scholar 

  42. Cruz P, Mendes A, Magalhães F D. Wavelet-based adaptive grid method for the resolution of nonlinear PDEs. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(4): 774–785

    Google Scholar 

  43. Jameson L, Miyama T. Wavelet analysis and ocean modeling: A dynamically adaptive numerical method “WOFD-AHO”. Monthly Weather Review, 2000, 128(5): 1536–1549

    Google Scholar 

  44. Alam J M, Kevlahan N K R, Vasilyev O V. Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. Journal of Computational Physics, 2006, 214(2): 829–857

    MathSciNet  MATH  Google Scholar 

  45. Bertoluzza S, Castro L. Adaptive Wavelet Collocation for Elasticity: First Results. Pavia, 2002

  46. Griebel M, Koster F. Adaptive wavelet solvers for the unsteady incompressible Navier-Stokes equations. In: Malek J, Nečas J, Rokyta M, eds. Advances in Mathematical Fluid Mechanics. Berlin: Springer, 2000, 67–118

    Google Scholar 

  47. Santos J C, Cruz P, Alves M A, Oliveira P J, Magalhães F D, Mendes A. Adaptive multiresolution approach for two-dimensional PDEs. Computer Methods in Applied Mechanics and Engineering, 2004, 193(3–5): 405–425

    MATH  Google Scholar 

  48. Vasilyev O V, Kevlahan N K R. An adaptive multilevel wavelet collocation method for elliptic problems. Journal of Computational Physics, 2005, 206(2): 412–431

    MathSciNet  MATH  Google Scholar 

  49. Ma X, Zabaras N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics, 2009, 228(8): 3084–3113

    MathSciNet  MATH  Google Scholar 

  50. Mehra M, Kevlahan N K R. An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. Journal of Computational Physics, 2008, 227(11): 5610–5632

    MathSciNet  MATH  Google Scholar 

  51. Yousefi H, Noorzad A, Farjoodi J. Simulating 2D waves propagation in elastic solid media using wavelet based adaptive method. Journal of Scientific Computing, 2010, 42(3): 404–425

    MathSciNet  MATH  Google Scholar 

  52. Yousefi H, Noorzad A, Farjoodi J. Multiresolution based adaptive schemes for second order hyperbolic PDEs in elastodynamic problems. Applied Mathematical Modelling, 2013, 37(12–13): 7095–7127

    MathSciNet  MATH  Google Scholar 

  53. Bürger R, Ruiz-Baier R, Schneider K. Adaptive multiresolution methods for the simulation of waves in excitable media. Journal of Scientific Computing, 2010, 43(2): 261–290

    MathSciNet  MATH  Google Scholar 

  54. Holmström M. Solving hyperbolic PDEs using interpolating wavelets. SIAM Journal on Scientific Computing, 1999, 21(2): 405–420

    MathSciNet  MATH  Google Scholar 

  55. Gottlieb D, Hesthaven J S. Spectral methods for hyperbolic problems. Journal of Computational and Applied Mathmatics, 2001, 128(1–2): 83–131

    MathSciNet  MATH  Google Scholar 

  56. Cebeci T, Shao J P, Kafyeke F, Laurendeau E. Computational Fluid Dynamics for Engineers: From Panel to Navier-Stokes Methods with Computer Programs. Long Beach, California: Springer, 2005

    Google Scholar 

  57. Hesthaven J S, Gottlieb S, Gottlieb D. Spectral Methods for Time-Dependent Problems. Cambridge: Cambridge University Press, 2007

    MATH  Google Scholar 

  58. Yousefi H, Tadmor E, Rabczuk T. High resolution wavelet based central schemes for modeling nonlinear propagating fronts. Engineering Analysis with Boundary Element, 2019, 103: 172–195

    Google Scholar 

  59. Yousefi H, Taghavi Kani A, Mahmoudzadeh Kani I. Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Frontiers of Structural and Civil Engineering, 2019, 13(2): 429–455

    Google Scholar 

  60. Yousefi H, Taghavi Kani A, Mahmoudzadeh Kani I. Response of a spherical cavity in a fully-coupled thermo-poro-elastodynamic medium by cell-adaptive second-order central high resolution schemes. Underground Space, 2018, 3(3): 206–217

    Google Scholar 

  61. Nguyen-Xuan H, Nguyen-Hoang S, Rabczuk T, Hackl K. A polytree-based adaptive approach to limit analysis of cracked structures. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 1006–1039

    MathSciNet  Google Scholar 

  62. Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Google Scholar 

  63. Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273

    MathSciNet  MATH  Google Scholar 

  64. Badnava H, Msekh M A, Etemadi E, Rabczuk T. An h-adaptive thermo-mechanical phase field model for fracture. Finite Elements in Analysis and Design, 2018, 138: 31–47

    Google Scholar 

  65. Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582

    MathSciNet  MATH  Google Scholar 

  66. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6–8): 641–658

    MathSciNet  MATH  Google Scholar 

  67. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    MATH  Google Scholar 

  68. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

    MathSciNet  MATH  Google Scholar 

  69. Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81: 48–71

    MathSciNet  MATH  Google Scholar 

  70. Anitescu C, Hossain M N, Rabczuk T. Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 638–662

    MathSciNet  Google Scholar 

  71. Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y, Rabczuk T. Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 1157–1178

    MathSciNet  Google Scholar 

  72. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424

    MathSciNet  MATH  Google Scholar 

  73. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21–22): 1892–1908

    MathSciNet  MATH  Google Scholar 

  74. Hong T K, Kennett B L N. Scattering attenuation of 2D elastic waves: theory and numerical modeling using a wavelet-based method. Bulletin of the Seismological Society of America, 2003, 93(2): 922–938

    MathSciNet  Google Scholar 

  75. Hong T K, Kennett B L N. Modelling of seismic waves in heterogeneous media using a wavelet-based method: Application to fault and subduction zones. Geophysical Journal International, 2003, 154(2): 483–498

    Google Scholar 

  76. Hong T K, Kennett B L N. Scattering of elastic waves in media with a random distribution of fluid-filled cavities: Theory and numerical modelling. Geophysical Journal International, 2004, 159(3): 961–977

    Google Scholar 

  77. Roth M, Korn M. Single scattering theory versus numerical modelling in 2-D random media. Geophysical Journal International, 1993, 112(1): 124–140

    Google Scholar 

  78. Persson P O, Runborg O. Simulation of a waveguide filter using wavelet-based numerical homogenization. Journal of Computational Physics, 2001, 166(2): 361–382

    MATH  Google Scholar 

  79. Engquist B, Runborg O. Wavelet-based numerical homogenization with applications. Multiscale and Multiresolution Methods, 2002, 20: 97–148

    MathSciNet  MATH  Google Scholar 

  80. Weinan E, Engquist B, Huang Z. Heterogeneous multiscale method: A general methodology for multiscale modeling. Physical Review. B, 2003, 67(9): 092101

    Google Scholar 

  81. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E. Heterogeneous multiscale methods: A review. Communications in Computational Physics, 2007, 2: 367–450

    MathSciNet  MATH  Google Scholar 

  82. Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Google Scholar 

  83. Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92

    Google Scholar 

  84. Talebi H, Silani M, Bordas S P, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071

    MathSciNet  Google Scholar 

  85. Engquist B, Holst H, Runborg O. Multiscale methods for wave propagation in heterogeneous media over long time. Numerical Analysis of Multiscale Computations, 2012, 82: 167–86

    MathSciNet  MATH  Google Scholar 

  86. Rabczuk T, Areias P, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    MathSciNet  MATH  Google Scholar 

  87. Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    MathSciNet  MATH  Google Scholar 

  88. Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    MathSciNet  Google Scholar 

  89. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411

    Google Scholar 

  90. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    MATH  Google Scholar 

  91. Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

    Google Scholar 

  92. Hong T K, Kennett B L N. A wavelet-based method for simulation of two-dimensional elastic wave propagation. Geophysical Journal International, 2002, 150(3): 610–638

    Google Scholar 

  93. Hong T K, Kennett B L N. On a wavelet-based method for the numerical simulation of wave propagation. Journal of Computational Physics, 2002, 183(2): 577–622

    MathSciNet  MATH  Google Scholar 

  94. Wu Y, McMechan G A. Wave extrapolation in the spatial wavelet domain with application to poststack reverse-time migration. Geophysics, 1998, 63(2): 589–600

    Google Scholar 

  95. Operto S, Virieux J, Hustedt B, Malfanti F. Adaptive wavelet-based finite-difference modelling of SH-wave propagation. Geophysical Journal International, 2002, 148(3): 476–498

    MATH  Google Scholar 

  96. Beylkin G, Keiser J M. An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations. Wavelet Analysis and Its Applications, 1997, 6: 137–97

    MathSciNet  MATH  Google Scholar 

  97. Sochacki J, Kubichek R, George J, Fletcher W R, Smithson S. Absorbing boundary conditions and surface waves. Geophysics, 1987, 52(1): 60–71

    Google Scholar 

  98. Lay T, Wallace T C. Modern Global Seismology. San Diego, California: Academic Press, 1995

    Google Scholar 

  99. Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998

    MATH  Google Scholar 

  100. Eilers P H C. A perfect smoother. Analytical Chemistry, 2003, 75(14): 3631–3636

    Google Scholar 

  101. Stickel J J. Data smoothing and numerical differentiation by a regularization method. Computers & Chemical Engineering, 2010, 34(4): 467–475

    Google Scholar 

  102. Hadjileontiadis L J, Panas S M. Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Transactions on Biomedical Engineering, 1997, 44(12): 1269–1281

    Google Scholar 

  103. Hadjileontiadis L J, Liatsos C N, Mavrogiannis C C, Rokkas T A, Panas S M. Enhancement of bowel sounds by wavelet-based filtering. IEEE Transactions on Biomedical Engineering, 2000, 47(7): 876–886

    Google Scholar 

  104. Fornberg B. Classroom note: Calculation of weights in finite difference formulas. SIAM Review, 1998, 40(3): 685–691

    MathSciNet  MATH  Google Scholar 

  105. Fornberg B. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of Computation, 1988, 51(184): 699–706

    MathSciNet  MATH  Google Scholar 

  106. Jameson L. A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM Journal on Scientific Computing, 1998, 19(6): 1980–2013

    MathSciNet  MATH  Google Scholar 

  107. Noh G, Bathe K J. An explicit time integration scheme for the analysis of wave propagations. Computers & Structures, 2013, 129: 178–193

    Google Scholar 

  108. Hulbert G M, Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering, 1996, 137(2): 175–188

    MathSciNet  MATH  Google Scholar 

  109. Vidale J, Helmberger D V, Clayton R W. Finite-difference seismograms for SH waves. Bulletin of the Seismological Society of America, 1985, 75: 1765–1782

    Google Scholar 

  110. Zhuang X, Huang R, Liang C, Rabczuk T. A coupled thermohydro-mechanical model of jointed hard rock for compressed air energy storage. Mathematical Problems in Engineering, 2014, 2014: 1–11

    Google Scholar 

  111. Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

    MathSciNet  Google Scholar 

  112. Ghasemi H, Park H S, Rabczuk T. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62

    MathSciNet  Google Scholar 

  113. Das B. Problems and Solutions in Thermoelasticity and Magnetothermoelasticity. Cham: Springer International Publishing, 2017

    Google Scholar 

  114. Donoho D L. Interpolating Wavelet Transforms. Stanford: Stanford University, 1992

    Google Scholar 

  115. Harten A, Engquist B, Osher S, Chakravarthy S R. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1997, 131(1): 3–47

    MATH  Google Scholar 

  116. Katerinaris J A. ENO and WENO schemes. In: Dougalis V A, Kampanis N A, Ekaterinaris J A, eds. Effective Computational Methods for Wave Propagation. New York: Chapman and Hall/CRC, 2008, 521–92

    Google Scholar 

  117. Gu Y, Wei G W. Conjugate filter approach for shock capturing. Communications in Numerical Methods in Engineering, 2003, 19(2): 99–110

    MathSciNet  MATH  Google Scholar 

  118. Wei G W, Gu Y. Conjugate filter approach for solving Burgers’ equation. Journal of Computational and Applied Mathematics, 2002, 149(2): 439–456

    MathSciNet  MATH  Google Scholar 

  119. Fatkullin I, Hesthaven J S. Adaptive high-order finite-difference method for nonlinear wave problems. Journal of Scientific Computing, 2001, 16(1): 47–67

    MathSciNet  MATH  Google Scholar 

  120. Leonard B P. Locally modified QUICK scheme for highly convective 2-D and 3-D flows. In: Taylor C, Morgan K, eds. Numerical Methods in Laminar and Turbulent Flow. Swansea: Pineridge Press, 1987, 35–47

    Google Scholar 

  121. Leonard B P. Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 1988, 8(10): 1291–1318

    MATH  Google Scholar 

  122. Leonard B P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 1991, 88(1): 17–74

    MATH  Google Scholar 

  123. Leonard B P. Bounded higher-order upwind multidimensional finite-volume convection-diffusion algorithms. In: Minkowycz W J, Sparrow E M, eds. Advances in Numerical Heat Transfer. Taylor and Francis, 1996, 1–57

  124. Darwish M S, Moukalled F H. Normalized variable and space formulation methodology for high-resolution schemes. Numerical Heat Transfer Part B-Fundamentals, 1994, 26(1): 79–96

    Google Scholar 

  125. Bürger R, Kozakevicius A. Adaptive multiresolution WENO schemes for multi-species kinematic flow models. Journal of Computational Physics, 2007, 224(2): 1190–1222

    MathSciNet  MATH  Google Scholar 

  126. Wang L L. Foundations of Stress Waves. Amsterdam: Elsevier, 2007

    Google Scholar 

  127. Day S M. Effect of a shallow weak zone on fault rupture: Numerical simulation of scale-model experiments. Bulletin of the Seismological Society of America, 2002, 92(8): 3022–3041

    Google Scholar 

  128. Galis M, Moczo P, Kristek J, Kristekova M. An adaptive smoothing algorithm in the TSN modelling of rupture propagation with the linear slip-weakening friction law. Geophysical Journal International, 2010, 180(1): 418–432

    Google Scholar 

  129. Ampuero J P. A physical and numerical study of earthquake nucleation. Dessertation for the Doctoral Degree. Paris: University of Paris, 2002 (In French)

    Google Scholar 

  130. Festa G, Vilotte J P. Influence of the rupture initiation on the intersonic transition: Crack-like versus pulse-like modes. Geophysical Research Letters, 2006, 33(15): L15320

    Google Scholar 

  131. Festa G, Vilotte J P. The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophysical Journal International, 2005, 161(3): 789–812

    Google Scholar 

  132. Trangenstein J A. Numerical solution of hyperbolic partial differential equations. Cambridge: Cambridge University Press, 2009

    MATH  Google Scholar 

  133. LeVeque R J. Numerical methods for conservation laws. 2nd ed. Basel: Birkhäuser Verlag, 1992

    MATH  Google Scholar 

  134. Cockburn B, Karniadakis G, Shu C W. The development of discontinuous galerkin methods. In: Cockburn B, Karniadakis G, Shu C-W, eds. Discontinuous Galerkin Methods. Heidelberg: Springer Berlin, 2000, 3–50

    Google Scholar 

  135. Banks J W, Henshaw W D. Upwind schemes for the wave equation in second-order form. Journal of Computational Physics, 2012, 231(17): 5854–5889

    MathSciNet  MATH  Google Scholar 

  136. Hughes T J R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs: Prentice Hall, 1987

    MATH  Google Scholar 

  137. Shafiei M, Khaji N. Simulation of two-dimensional elastodynamic problems using a new adaptive physics-based method. Meccanica, 2014, 49(6): 1353–1366

    MATH  Google Scholar 

  138. Yousefi H, Noorzad A, Farjoodi J, Vahidi M. Multiresolution-based adaptive simulation of wave equation. Applied Mathematics & Information Sciences, 2012, 6: 47S–58S

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Iran National Science Foundation (INSF). Also, a sincere thank to Zohre Yousefi for her diligent proofreading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, H., Farjoodi, J. & Mahmoudzadeh Kani, I. Adaptive simulation of wave propagation problems including dislocation sources and random media. Front. Struct. Civ. Eng. 13, 1054–1081 (2019). https://doi.org/10.1007/s11709-019-0536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0536-4

Keywords

Navigation