Skip to main content
Log in

A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

With the development of renewable energy technologies, the recovery and utilization of low-grade energy based on hydroelectric effect have drawn much attention owing to its environmental friendliness. Herein, a novel hydroelectric generator utilizing sodium alginate-graphene oxide (SA-GO) fibers is proposed, which is ecofriendly and low-cost. These fibers with a length of 5 cm and a diameter of 0.15 mm can generate an open circuit voltage (Voc) of approximately 0.25 V and a short circuit current (Isc) of 4 µA. By connecting SA-GO fibers in either series or parallel, this combination can power some electronic devices. Furthermore, these fibers enable the recovery of low-grade energy from the atmosphere or around the human body. Both experimental and theoretical analysis confirm that the directional flow of protons driven by water molecules is the main mechanism for power generation of SA-GO fibers. This study not only presents a simple energy transformation method that is expected to be applied to our daily life, but also provides a novel idea for the design of humidity electricity-generation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kılkış Ş, Krajačić G, Duić N, et al. Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis. Energy Conversion and Management, 2019, 199: 111938

    Article  Google Scholar 

  2. Zhou Q, Gong F, Xie Y L, et al. A general strategy for designing metal-free catalysts for highly-efficient nitric oxide reduction to ammonia. Fuel, 2022, 310: 122442

    Article  CAS  Google Scholar 

  3. Gong F, Wang W B, Li H, et al. Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Applied Energy, 2020, 261: 114410

    Article  CAS  Google Scholar 

  4. Kempton W, Pimenta F M, Veron D E, et al. Electric power from offshore wind via synoptic-scale interconnection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(16): 7240–7245

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Gong F, Li H, Wang W B, et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy, 2019, 58: 322–330

    Article  CAS  Google Scholar 

  6. Moriarty P. Global nuclear energy: An uncertain future. AIMS Energy, 2021, 9(5): 1027–1042

    Article  CAS  ADS  Google Scholar 

  7. Wang Z, Tan L, Pan X M, et al. Self-powered viscosity and pressure sensing in microfluidic systems based on the piezoelectric energy harvesting of flowing droplets. ACS Applied Materials & Interfaces, 2017, 9(34): 28586–28595

    Article  CAS  Google Scholar 

  8. Cai M J, Yang Z S, Cao J Y, et al. Recent advances in human motion excited energy harvesting systems for wearables. Energy Technology, 2020, 8(10): 2000533

    Article  Google Scholar 

  9. Fang L, Zheng Q W, Hou W C, et al. A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator. Nano Energy, 2022, 97: 107164

    Article  CAS  Google Scholar 

  10. Zhou L M, Liu Y Y, Liu S L, et al. For more and purer hydrogen-the progress and challenges in water as shift reaction. Journal of Energy Chemistry, 2023, 83: 363–396

    Article  CAS  Google Scholar 

  11. Wang S J, Gong F, Zhou Q, et al. Transition metal enhanced chromium nitride as composite nitrogen carrier for sustainable chemical looping ammonia synthesis. Applied Catalysis B: Environmental, 2023, 339: 123134

    Article  CAS  Google Scholar 

  12. Yang C R, Ko C T, Chang S F, et al. Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer. Nano Energy, 2022, 92: 106791

    Article  CAS  Google Scholar 

  13. Benadda B, Beldjilali B, Mankouri A, et al. Secure IoT solution for wearable health care applications, case study Electric Imp development platform. International Journal of Communication Systems, 2018, 31(5): e3499

    Article  Google Scholar 

  14. Nelson E C, Verhagen T, Vollenbroek-Hutten M, et al. Is wearable technology becoming part of us? Developing and validating a measurement scale for wearable technology embodiment. HJMIR mealth and uHealth, 2019, 7(8): e12771

    Article  Google Scholar 

  15. Dolez P I. Energy harvesting materials and structures for smart textile applications: Recent progress and path forward. Sensors, 2021, 21(18): 6297

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Jiang G Q, Dong T, Guo Z K. Nonlinear dynamics of an unsymmetric cross-ply square composite laminated plate for vibration energy harvesting. Symmetry, 2021, 13(7): 1261

    Article  ADS  Google Scholar 

  17. Song J W, Sun G H, Zeng X, et al. Piezoelectric energy harvester with double cantilever beam undergoing coupled bending-torsion vibrations by width-splitting method. Scientific Reports, 2022, 12(1): 583

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Li Z, Yuan S M, Ma J, et al. Cutting force and specific energy for rotary ultrasonic drilling based on kinematics analysis of vibration effectiveness. Chinese Journal of Aeronautics, 2022, 35(1): 376–387

    Article  Google Scholar 

  19. Zhou Q, Gong F, Xie Y L, et al. 1 + 1 > 2: Learning from the interfacial modulation on single-atom electrocatalysts to design dual-atom electrocatalysts for dinitrogen reduction. ScienceDirect, 2023, 8(6): 1753–1763

    CAS  Google Scholar 

  20. Yadav P, Sahay K, Srivastava M, et al. Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap. Frontiers in Energy, 2023, 17(6): 727–750

    Article  Google Scholar 

  21. Gao H Q, Hu M G, Ding J F, et al. Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes. Advanced Functional Materials, 2023, 33(15): 2213410

    Article  CAS  Google Scholar 

  22. Sun Z Y, Wen X, Wang L M, et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience, 2022, 2: 32–46

    Article  Google Scholar 

  23. Luo Z L, Liu C H, Fan S S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy, 2019, 60: 371–376

    Article  CAS  Google Scholar 

  24. Liang Y, Zhao F, Cheng Z H, et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy & Environmental Science, 2018, 11(7): 1730–1735

    Article  CAS  Google Scholar 

  25. Zhang J, Zhan K, Zhang S S, et al. Discontinuous streaming potential via liquid gate. eScience, 2022, 2: 615–622

    Article  Google Scholar 

  26. Bai J X, Huang Y X, Wang H Y, et al. Sunlight-coordinated highperformance moisture power in natural conditions. Advanced Materials, 2022, 34(10): 2103897

    Article  CAS  Google Scholar 

  27. Ji L, Zheng K, Zheng L, et al. Direct transition of potential of water droplets to electric energy using aligned single-walled carbon nanotubes. Chinese Physics B, 2010, 19(6): 066101

    Article  ADS  Google Scholar 

  28. Yang C, Huang Y X, Cheng H H, et al. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Advanced Materials, 2019, 31(2): 1805705

    Article  Google Scholar 

  29. Zhang Z H, Li X M, Yin J, et al. Emerging hydrovoltaic technology. Nature Nanotechnology, 2018, 13(12): 1109–1119

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Guan W X, Guo Y H, Yu G H. Carbon materials for solar water evaporation and desalination. Small, 2021, 17(48): 2007176

    Article  CAS  Google Scholar 

  31. Zhang P X, Liu Y Y, Liu S L, et al. Precise design and modification engineering of single-atom catalytic materials for oxygen reduction. Small, 2024, 20(4): 2305782

    Article  CAS  Google Scholar 

  32. Zhang H H, Liu Y Y, Wei H J, et al. Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 314: 121495

    Article  CAS  Google Scholar 

  33. Xu T, Ding X T, Huang Y X, et al. An efficient polymer moist-electric generator. Energy & Environmental Science, 2019, 12(3): 972–978

    Article  CAS  Google Scholar 

  34. Xue G B, Xu Y, Ding T P, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12(4): 317–321

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Li J, Liu K, Xue G B, et al. Electricity generation from water droplets via capillary infiltrating. Nano Energy, 2018, 48: 211–216

    Article  CAS  Google Scholar 

  36. Gong F, Li H, Zhou Q, et al. Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation. Nano Energy, 2020, 74: 104922

    Article  CAS  Google Scholar 

  37. Liang Y, Zhao F, Cheng Z H, et al. Self-powered wearable graphene fiber for information expression. Nano Energy, 2017, 32: 329–335

    Article  CAS  ADS  Google Scholar 

  38. Li J H, Xia B L, Xiao X, et al. Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano, 2023, 17(19): 19232–19241

    Article  CAS  PubMed  Google Scholar 

  39. Cho H, Kim S, Liang H, et al. Electric-potential-induced uniformity in graphene oxide deposition on porous alumina substrates. Ceramics International, 2020, 46(10): 14828–14839

    Article  CAS  Google Scholar 

  40. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 2011, 36(7): 914–944

    Article  CAS  Google Scholar 

  41. Yan H P, Liu Z, Qi R H. A review of humidity gradient-based power generator: Devices, materials and mechanisms. Nano Energy, 2022, 101: 107591

    Article  CAS  Google Scholar 

  42. Wang K Q, Xu W H, Zhang X, et al. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Research Energy, 2023, 2: e9120042

    Article  Google Scholar 

  43. Zhang P X, Sun K, Liu Y Y, et al. Improving bifunctional catalytic activity of biochar via in-situ growth of nickel–iron hydroxide as cathodic catalyst for zinc-air batteries. Biochar, 2023, 5(1): 60

    Article  CAS  ADS  Google Scholar 

  44. Zhang P X, Liu Y Y, Wang S L, et al. Wood-derived monolithic catalysts with the ability of activating water molecules for oxygen electrocatalysis. Small, 2022, 18(34): 2202725

    Article  CAS  Google Scholar 

  45. Hassan S H, Velayutham T S, Chen Y W, et al. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. International Journal of Biological Macromolecules, 2021, 180: 392–402

    Article  CAS  PubMed  Google Scholar 

  46. Li M J, Zong L, Yang W Q, et al. Biological nanofibrous generator for electricity harvest from moist air flow. Advanced Functional Materials, 2019, 29(32): 1901798

    Article  Google Scholar 

  47. Shakeri F, Ariaeenejad S, Ghollasi M, et al. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes. Scientific Reports, 2022, 12(1): 2072

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Li Y Q, Zhang H, Fan M Z, et al. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Scientific Reports, 2017, 7(1): 46379

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Bae J, Yun T G, Suh B L, et al. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy & Environmental Science, 2020, 13(2): 527–534

    Article  CAS  Google Scholar 

  50. Zhang R, Qu M J, Wang H, et al. Moist-electric films based on asymmetric distribution of sodium alginate oxygen-containing functional groups. Reactive & Functional Polymers, 2022, 181: 105421

    Article  CAS  Google Scholar 

  51. Chen Z D, Song J, Xia Y M, et al. High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Materials Science and Engineering C, 2021, 127: 112204

    Article  CAS  PubMed  Google Scholar 

  52. Gong F, Li H, Huang J G, et al. Low-grade energy harvesting from dispersed exhaust steam for power generation using a soft biomimetic actuator. Nano Energy, 2022, 91: 106677

    Article  CAS  Google Scholar 

  53. Lv Y L, Gong F, Li H, et al. A flexible electrokinetic power generator derived from paper and ink for wearable electronics. Applied Energy, 2020, 279: 115764

    Article  Google Scholar 

  54. Abbasi H R, Karimian S M H. Water mass flow rate in a finite SWCNT under electric charge: A molecular dynamic simulation. Journal of Molecular Liquids, 2016, 224: 165–170

    Article  CAS  Google Scholar 

  55. Xu Y F, Chen P N, Peng H S. Generating electricity from water through carbon nanomaterials. Chemistry, 2018, 24(24): 6287–6294

    Article  CAS  PubMed  Google Scholar 

  56. Zhao F, Cheng H H, Zhang Z P, et al. Direct power generation from a graphene oxide film under moisture. Advanced Materials, 2015, 27(29): 4351–4357

    Article  CAS  PubMed  Google Scholar 

  57. Daripa S, Khawas K, Behere R P, et al. Efficient moisture-induced energy harvesting from water-soluble conjugated block copolymer-functionalized reduced graphene oxide. ACS Omega, 2021, 6(11): 7257–7265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Q J, Zhou M, Yang Q F, et al. Flexible carbon dots composite paper for electricity generation from water vapor absorption. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(23): 10639–10643

    Article  CAS  Google Scholar 

  59. Chen N, Liu Q, Liu C, et al. MEG actualized by high-valent metal carrier transport. Nano Energy, 2019, 65: 104047

    Article  CAS  Google Scholar 

  60. Gao X, Xu T, Shao C X, et al. Electric power generation using paper materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(36): 20574–20578

    Article  CAS  Google Scholar 

  61. Lyu Q Q, Peng B L, Xie Z J, et al. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Applied Materials & Interfaces, 2020, 12(51): 57373–57381

    Article  CAS  Google Scholar 

  62. Yang W Q, Lv L L, Li X K, et al. Qatarized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano, 2020, 14(8): 10600–10607

    Article  CAS  PubMed  Google Scholar 

  63. Bae J, Yun T G, Suh B L, et al. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy & Environmental Science, 2020, 13(2): 527–534

    Article  CAS  Google Scholar 

  64. Sharfarets B P, Kurochkin V E, Sergeev V A. On the operation of an electroacoustic transducer based on electrokinetic phenomena under turbulent fluid motion. Acoustical Physics, 2020, 66(5): 559–563

    Article  ADS  Google Scholar 

  65. Yun T G, Bae J, Rothschild A, et al. Transpiration driven electrokinetic power generator. ACS Nano, 2019, 13(11): 12703–12709

    Article  CAS  PubMed  Google Scholar 

  66. Grahame D C. The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 1947, 41(3): 441–501

    Article  CAS  PubMed  Google Scholar 

  67. Hunter R J. Zeta Potential in Colloid Science: Principles and Applications. Cambridge: Academic Press, 1988

    Google Scholar 

  68. Kirby B J, Hasselbrink E FJr. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 2004, 25(2): 187–202

    Article  CAS  PubMed  Google Scholar 

  69. Olthuis W, Schippers B, Eijkel J, et al. Energy from streaming current and potential. Sensors and Actuators. B, Chemical, 2005, 111–112: 385–389

    Article  Google Scholar 

  70. Xue G B, Xu Y, Ding T P, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12(4): 317–321

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Xu T, Ding X T, Cheng H H, et al. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Advanced Materials, 2023, early access, https://doi.org/10.1002/adma.202209661

  72. Albayrak C, Barim G, Dag O. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems. Journal of Colloid and Interface Science, 2014, 433: 26–33

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Tan J, Fang S M, Zhang Z H, et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nature Communications, 2022, 13(1): 3643

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Fund for Science and Technology Innovation of Jiangsu Province, China (No. BE2022022-3) and the Ministry of Science and Technology of China (No. 2023YFB4203704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Li or Rui Xiao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Song, J., Chen, H. et al. A fibrous hydroelectric generator derived from eco-friendly sodium alginate for low-grade energy harvesting. Front. Energy (2024). https://doi.org/10.1007/s11708-024-0930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11708-024-0930-z

Keywords

Navigation