Skip to main content
Log in

Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels

  • Perspective
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. National Energy Administration of China. The development of renewable energy reached a new level in 2021. 2022-01-28, available at National Energy Administration website

  2. National Energy Administration of China. New energy consumption capacity. 2022-06-10, available at National Energy Administration website

  3. Won D H, Shin H, Koh J, et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angewandte Chemie International Edition, 2016, 55(32): 9297–9300

    Article  Google Scholar 

  4. Ma M, Trzesniewski B J, Xie J, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angewandte Chemie International Edition, 2016, 55(33): 9748–9752

    Article  Google Scholar 

  5. Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537(7620): 382–386

    Article  Google Scholar 

  6. Gao S, Jiao X, Sun Z, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angewandte Chemie International Edition, 2016, 55(2): 698–702

    Article  Google Scholar 

  7. Wang Y, Zhou J, Lv W, et al. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Applied Surface Science, 2016, 362: 394–398

    Article  Google Scholar 

  8. Zheng X, De Luna P, García de Arquer F P, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805

    Article  Google Scholar 

  9. Ross M B, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658

    Article  Google Scholar 

  10. Zhao C, Wang J. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chemical Engineering Journal, 2016, 293: 161–170

    Article  Google Scholar 

  11. Ma M, Liu K, Shen J, et al. In situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion. ACS Energy Letters, 2018, 3(6): 1301–1306

    Article  Google Scholar 

  12. Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. Journal of the American Chemical Society, 2017, 139(24): 8078–8081

    Article  Google Scholar 

  13. Choi J, Kim J, Wagner P, et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy & Environmental Science, 2019, 12(2): 747–755

    Article  Google Scholar 

  14. Lv J J, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Advanced Materials, 2018, 30(49): 1803111

    Article  Google Scholar 

  15. Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360(6390): 783–787

    Article  Google Scholar 

  16. Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C−C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3(6): 478–487

    Article  Google Scholar 

  17. Dinh C T, García de Arquer F P, Sinton D, et al. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Letters, 2018, 3(11): 2835–2840

    Article  Google Scholar 

  18. Huang J E, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372(6546): 1074–1078

    Article  Google Scholar 

  19. Chen C, Li Y, Yu S, et al. Cu−Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule, 2020, 4(8): 1688–1699

    Article  Google Scholar 

  20. Möller T, Ngo Thanh T, Wang X, et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy & Environmental Science, 2021, 14(11): 5995–6006

    Article  Google Scholar 

  21. Peng C, Luo G, Xu Z, et al. Lithiation-enabled high-eensity nitrogen vacancies electrocatalyze CO2 to C2 products. Advanced Materials, 2021, 33(40): 2103150

    Article  Google Scholar 

  22. Yang P P, Zhang X L, Gao F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. Journal of the American Chemical Society, 2020, 142(13): 6400–6408

    Article  Google Scholar 

  23. Li H, Liu T, Wei P, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angewandte Chemie International Edition, 2021, 60(26): 14329–14333

    Article  Google Scholar 

  24. Zhang X, Li J, Li Y Y, et al. Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. Journal of the American Chemical Society, 2021, 143(8): 3245–3255

    Article  Google Scholar 

  25. Kas R, Hummadi K K, Kortlever R, et al. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nature Communications, 2016, 7(1): 10748

    Article  Google Scholar 

  26. Chen B, Xu J, Zou J, et al. Formate-selective CO2 electrochemical reduction with a hydrogen-reduction-suppressing bronze alloy hollow fiber electrode. ChemSusChem, 2020, 13(24): 6594–6601

    Article  Google Scholar 

  27. Rabiee H, Zhang X, Ge L, et al. Tuning the product selectivity of the Cu hollow fiber gas diffusion electrode for efficient CO2 reduction to formate by controlled surface Sn electrodeposition. ACS Applied Materials & Interfaces, 2020, 12(19): 21670–21681

    Article  Google Scholar 

  28. Rabiee H, Ge L, Zhang X, et al. Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2021, 298: 120538

    Article  Google Scholar 

  29. Rabiee H, Ge L, Zhang X, et al. Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Applied Catalysis B: Environmental, 2021, 286: 119945

    Article  Google Scholar 

  30. Zhu C, Shen G, Chen W, et al. Copper hollow fiber electrode for efficient CO2 electroreduction. Journal of Power Sources, 2021, 495: 229814

    Article  Google Scholar 

  31. Li S, Chen W, Dong X, et al. Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nature Communications, 2022, 13(1): 3080

    Article  Google Scholar 

  32. Chen W, Chen S, Liang T, et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 2018, 13(4): 345–350

    Article  Google Scholar 

  33. Lei L, Pan F, Lindbrathen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nature Communications, 2021, 12(1): 268

    Article  Google Scholar 

  34. Huang Z, Zhu L, Li A, et al. Renewable synthetic fuel: turning carbon dioxide back into fuel. Frontiers in Energy, 2022, 16(2): 145–149

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 91745114 and 21802160), the “Transformational Technologies for Clean Energy and Demonstration,” the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA 21000000), Hundred Talents Program of the Chinese Academy of Sciences (No. 2060299), Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. E224301401), Shanghai Sailing Program (No. 18YF1425700), Shanghai Functional Platform for Innovation Low-Carbon Technology, and the Major Project of the Science and Technology Department of Inner Mongolia (No. 2021ZD0020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Dong, X., Chen, W. et al. Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels. Front. Energy 16, 700–705 (2022). https://doi.org/10.1007/s11708-022-0842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0842-8

Navigation