Skip to main content

Advertisement

Log in

A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

In this paper, the optimization of hydrogen (H2) production by ammonia borane (NH3BH3) over PdCoAg/AC was investigated using the response surface methodology. Besides, the electro-oxidation of NH3BH3 was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells. Moreover, the ternary alloyed catalyst was synthesized using the chemical reduction method. The synergistic effect between Pd, Co and Ag plays an important role in enhancement of NH3BH3 hydrolysis. In addition, the support effect could also efficiently improve the catalytic performance. Furthermore, the effects of NH3BH3 concentration (0.1–50 mmol/5 mL), catalyst amount (1–30 mg) and temperature (20°C–50°C) on the rate of H2 production and the effects of temperature (20°C–50°C), NH3BH3 concentration (0.05–1 mol/L) and catalyst amount (0.5–5 µL) on the electro-oxidation reaction of NH3BH3 were investigated using the central composite design experimental design. The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data. A further statistical analysis of the quadratic model demonstrated the significance of the model with a p-value far less than 0.05 for each model and coefficient of determination (R2) of 0.85 and 0.95 for H2 production rate and NH3BH3 electrroxidation peak current, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy, 2012, 37(2): 1184–1203

    Google Scholar 

  2. Tiwari A, Pandey A. Cyanobacterial hydrogen production—a step towards clean environment. International Journal of Hydrogen Energy, 2012, 37(1): 139–150

    Google Scholar 

  3. Moriarty P, Honnery D. Hydrogen’s role in an uncertain energy future. International Journal of Hydrogen Energy, 2009, 34(1): 31–39

    Google Scholar 

  4. Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 2014, 39(1): 1–12

    Google Scholar 

  5. Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111

    Google Scholar 

  6. Ball M, Weeda M. The hydrogen economy–vision or reality? International Journal of Hydrogen Energy, 2015, 40(25): 7903–7919

    Google Scholar 

  7. Meeks N D, Baxley S. Fuel cells and the hydrogen economy. Chem Eng Prog, 2016, 112(7): 34–37

    Google Scholar 

  8. Granovskii M, Dincer I, Rosen M A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources, 2006, 159(2): 1186–1193

    Google Scholar 

  9. Van Mierlo J, Maggetto G, Lataire P. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion Management, 2006, 47(17): 2748–2760

    Google Scholar 

  10. Wang Y, Meng W, Wang D, Wang Z R, Zou K L, Cao Z Q, Zhang K, Wu S W, Li G D. Ultrafine cobalt-molybdenum-boron nanocatalyst for enhanced hydrogen generation property from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2019, 44(41): 23267–23276

    Google Scholar 

  11. Appleby A J. Fuel cell technology: status and future prospects. Energy, 1996, 21(7–8): 521–653

    Google Scholar 

  12. Amendola S C, Sharp-Goldman S L, Janjua M S, Kelly M T, Petillo P J, Binder M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources, 2000, 85(2): 186–189

    Google Scholar 

  13. Miesse C M, Jung W S, Jeong K J, Lee J K, Lee J, Han J, Yoon S P, Nam S W, Lim T H, Hong S A. Direct formic acid fuel cell portable power system for the operation of a laptop computer. Journal of Power Sources, 2006, 162(1): 532–540

    Google Scholar 

  14. Dillon R, Srinivasan S, Arico A S, Antonucci V. International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources, 2004, 127(1–2): 112–126

    Google Scholar 

  15. Zadick A, Dubau L, Artyushkova K, Serov A, Atanassov P, Chatenet M. Nickel-based electrocatalysts for ammonia borane oxidation: enabling materials for carbon-free-fuel direct liquid alkaline fuel cell technology. Nano Energy, 2017, 37: 248–259

    Google Scholar 

  16. Wu D F, Ouyang L Z, Huang J M, Liu J W, Wang H, Shao H, Zhu M. Synthesis and hydrogen storage property tuning of fit Zr(BH4)4. 8NH3 via physical vapour deposition and composite formation. International Journal of Hydrogen Energy, 2018, 43(41): 19182–19188

    Google Scholar 

  17. Zhang X B, Yan J M, Han S, Shioyama H, Yasuda K, Kuriyama N, Xu Q. A high performance anion exchange membrane-type ammonia borane fuel cell. Journal of Power Sources, 2008, 182(2): 515–519

    Google Scholar 

  18. Zhang X B, Han S, Yan J M, Chandra M, Shioyama H, Yasuda K, Kuriyama N, Kobayashi T, Xu Q. A new fuel cell using aqueous ammonia-borane as the fuel. Journal of Power Sources, 2007, 168(1): 167–171

    Google Scholar 

  19. Ouyang L Z, Chen W, Liu J W, Felderhoff M, Wang H, Zhu M. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Advanced Energy Mater, 2017, 7(19): 1700299

    Google Scholar 

  20. Chen W, Ouyang L Z, Liu J W, Yao X D, Wang H, Liu Z W, Zhu M. Hydrolysis and regeneration of sodium borohydride (NaBH4): a combination of hydrogen production and storage. Journal of Power Sources, 2017, 359: 400–407

    Google Scholar 

  21. Hua T Q, Ahluwalia R K. Off-board regeneration of ammonia borane for use as a hydrogen carrier for automotive fuel cells. International Journal of Hydrogen Energy, 2012, 37(19): 14382–14392

    Google Scholar 

  22. Rees N V, Compton R G. Carbon-free energy: a review of ammonia-and hydrazine-based electrochemical fuel cells. Energy & Environmental Science, 2011, 4(4): 1255–1260

    Google Scholar 

  23. Tan Z H, Ouyang L Z, Liu J W, Wang H, Shao H Y, Zhu M. Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si. International Journal of Hydrogen Energy, 2018, 43(5): 2903–2912

    Google Scholar 

  24. Chandra M, Xu Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. Journal of Power Sources, 2006, 156(2): 190–194

    Google Scholar 

  25. Li X G, Liu T, Sato M, Takahashi S. Synthesis and characterization of Fe-Ti nanoparticles by nitrogen plasma metal reaction. Powder Technology, 2006, 163(3): 183–187

    Google Scholar 

  26. Rakap M, Kalu E E, Ozkar S. Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution. International Journal of Hydrogen Energy, 2011, 36(2): 1448–1455

    Google Scholar 

  27. Sahiner N, Ozay O, Aktas N, Inger E, He J B. The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. International Journal of Hydrogen Energy, 2011, 36(23): 15250–15258

    Google Scholar 

  28. Yuzawa H, Yoshida T, Yoshida H. Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light. Applied Catalysis B: Environmental, 2012, 115–116: 294–302

    Google Scholar 

  29. Turhan T, Avcibasi Y G, Sahiner N. Versatile p(3-sulfopropyl methacrylate) hydrogel reactor for the preparation of Co, Ni nanoparticles and their use in hydrogen production. Journal of Industrial and Engineering Chemistry, 2013, 19(4): 1218–1225

    Google Scholar 

  30. Tong D G, Han X, Chu W, Chen H, Ji X Y. Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Materials Letters, 2007, 61(25): 4679–4682

    Google Scholar 

  31. Sahiner N, Sagbas L. The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. Journal of Power Sources, 2014, 246: 55–62

    Google Scholar 

  32. Yao Q L, Lu Z H, Yang Y W, Chen Y Z, Chen X S, Jiang H L. Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Research, 2018, 11(8): 4412–4422

    Google Scholar 

  33. Choi S M, Seo M H, Kim H, Kim W B. Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synthetic Metals, 2011, 161(21–22): 2405–2411

    Google Scholar 

  34. Ozay O, Aktas N, Inger E, Sahiner N. Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 2011, 36(3): 1998–2006

    Google Scholar 

  35. Fernandes R, Patel N, Miotello A. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co-B amorphous catalyst. Applied Catalysis B: Environmental, 2009, 92 (1–2): 68–74

    Google Scholar 

  36. Wang S, Zhang D, Ma Y Y, Zhang H, Gao J, Nie Y T, Sun X H. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. ACS Applied Materials & Interfaces, 2014, 6(15): 12429–12435

    Google Scholar 

  37. Tano T, Esumi K, Meguro K. Preparation of organopalladium sols by thermal-decomposition of palladium acetate. Journal of Colloid and Interface Science, 1989, 133(2): 530–533

    Google Scholar 

  38. Bezerra M A, Santelli R E, Oliveira E P, Villar L S, Escaleira L A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5): 965–977

    Google Scholar 

  39. Ling Z, Cao J, Zhang W, Zhang Z, Fang X, Gao X. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Applied Energy, 2018, 228: 777–788

    Google Scholar 

  40. Yılmaz Ş, Ecer Ü, Şahan T. Modelling and optimization of As(III) adsorption onto thiol-functionalized bentonite from aqueous solutions using response surface methodology approach. ChemistrySelect, 2018, 3(32): 9326–9335

    Google Scholar 

  41. Çelik Kazici H, Yildiz F, İzgi M S, Ulaş B, Kivrak H. Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2019, 44(21): 10561–10572

    Google Scholar 

  42. Şahan T, Erol F, Yılmaz Ş. Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization. Microchemical Journal, 2018, 138: 360–368

    Google Scholar 

  43. Hitit Z Y, Lazaro C Z, Hallenbeck P C. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. International Journal of Hydrogen Energy, 2017, 42(10): 6578–6589

    Google Scholar 

  44. Zhang X B, Han S, Yan J M, Shioyama H, Kuriyama N, Kobayashi T, Xu Q. Electrochemical oxidation of ammonia borane on gold electrode. International Journal of Hydrogen Energy, 2009, 34(1): 174–179

    Google Scholar 

  45. Smiljanić M, Srejic I, Potocnik J, Mitric M, Rakocevic Z, Strbac S. Synergistic electrocatalytic effect of Pd and Rh nanoislands co-deposited on Au(poly) on HER in alkaline solution. International Journal of Hydrogen Energy, 2018, 43(42): 19420–19431

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Projects Department of Van Yü züncüYıl University (Project No: FYL-2018-6571).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilal Çelık Kazici or Tekin Şahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelık Kazici, H., Yilmaz, Ş., Şahan, T. et al. A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology. Front. Energy 14, 578–589 (2020). https://doi.org/10.1007/s11708-020-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0808-7

Keywords

Navigation