Skip to main content
Log in

Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The preparation of Li4SiO4-coated LiNi0.5Mn1.5O4 materials by sintering the SiO2-coated nickel-manganese oxides with lithium salts using abundant and low-cost sodium silicate as the silicon source was reported. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It was found that a uniform and complete SiO2 coating layer could be obtained at a suitable pH value of 10, which transformed to a good Li4SiO4 coating layer afterwards. When used as the cathode materials for lithium-ion batteries, the Li4SiO4-coated LiNi0.5Mn1.5O4 samples deliver a better electrochemical performance in terms of the discharge capacity, rate capability, and cycling stability than that of the pristine material. It can still deliver 111.1 mAh/g at 20 C after 300 cycles, with a retention ratio of 93.1% of the stable capacity, which is far beyond that of the pristine material (101.3 mAh/g, 85.6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hai B, Shukla A K, Duncan H, Chen G Y. The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(3): 759–769

    Article  Google Scholar 

  2. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S. High voltage spinel oxides for Li-ion batteries from the material research to the application. Journal of Power Sources, 2009, 189(1): 344–352

    Article  Google Scholar 

  3. Ma J, Hu P, Cui G, Chen L. Surface and interface issues in spinel LiMn1.5Ni0.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chemistry of Materials, 2016, 28(11): 3578–3606

    Article  Google Scholar 

  4. Kim J H, Pieczonka N P, Yang L. Challenges and approaches for high-voltage spinel lithium-ion batteries. ChemPhysChem, 2014, 15(10): 1940–1954

    Article  Google Scholar 

  5. Pieczonka N P W, Liu Z Y, Lu P, Olson K L, Moote J, Powell B P, Kim J H. Understanding transition-metal dissolution behavior in LiMn1.5Ni0.5O4 high-voltage spinel for lithium ion batteries. Journal of Physical Chemistry C, 2013, 117(31): 15947–15957

    Article  Google Scholar 

  6. Kim J H, Pieczonka N P W, Li Z, Wu Y, Harris S, Powell B R. Understanding the capacity fading mechanism in LiMn1.5Ni0.5O4/ graphite Li-ion batteries. Electrochimica Acta, 2013, 90: 556–562

    Article  Google Scholar 

  7. Lee Y, Mun J, Kim D W, Lee J K, Choi W. Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol-gel method for lithium ion batteries. Electrochimica Acta, 2014, 115: 326–331

    Article  Google Scholar 

  8. Kunduraci M, Amatucci G G. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2-xNixO4 (0.50≥x≥0.36) spinels. Journal of Power Sources, 2007, 165(1): 359–367

    Article  Google Scholar 

  9. Deng J C, Xu Y L, Li L, Feng T Y, Li L. Microporous LiAlSiO4 with high ionic conductivity working as a coating material and water adsorbent for LiNi0.5Mn1.5O4 cathode. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(17): 6561–6568

    Article  Google Scholar 

  10. Zhong G B, Wang Y Y, Yu Y Q, Chen C H. Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe,Co,Cr) 5V cathode materials for lithium ion batteries. Journal of Power Sources, 2012, 205: 385–393

    Article  Google Scholar 

  11. Sun P, Ma Y, Zhai T, Li H. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochimica Acta, 2016, 191: 237–246

    Article  Google Scholar 

  12. Wang Y, Yang G, Yang Z, Zhang L, Fu M, Long H, Li Z, Huang Y, Lu P. High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition. Electrochimica Acta, 2013, 102: 416–422

    Article  Google Scholar 

  13. Chen Z X, Qiu S, Cao Y L, Ai X P, Xie K, Hong X B, Yang H X. Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry, 2012, 22(34): 17768–17772

    Article  Google Scholar 

  14. Choi S H, Hong Y J, Kang Y C. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nanoscale, 2013, 5(17): 7867–7871

    Article  Google Scholar 

  15. Tu W Q, Xing L D, Xia P, Xu M Q, Liao Y H, Li W S. Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature. Electrochimica Acta, 2016, 204: 192–198

    Article  Google Scholar 

  16. Zhang L, Zhang Z C, Wu H M, Amine K. Novel redox shuttle additive for high-voltage cathode materials. Energy & Environmental Science, 2011, 4(8): 2858–2862

    Article  Google Scholar 

  17. Liu J, Manthiram A. Improved electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. Journal of the Electrochemical Society, 2009, 156(1): A66–A72

    Article  Google Scholar 

  18. Noguchi T, Yamazaki I, Numata T, Shirakata M. Effect of Bi oxide surface treatment on 5 spinel LiNi0.5Mn1.5-xTixO4. Journal of Power Sources, 2007, 174(2): 359–365

    Article  Google Scholar 

  19. Zhao G Y, Lin Y B, Zhou T, Lin Y, Huang Y D, Huang Z G. Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery. Journal of Power Sources, 2012, 215: 63–68

    Article  Google Scholar 

  20. Qiao Z, Sha O, Tang Z Y, Yan J, Wang S L, Liu H B, Xu Q, Su Y J. Surface modification of LiNi0.5Mn1.5O4 by LiCoO2/Co3O4 composite for lithium-ion batteries. Materials Letters, 2012, 87: 176–179

    Article  Google Scholar 

  21. Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien C M, Zaghib K. Effect of nano LiFePO4 coating on LiNi0.5Mn1.5O4 5 V cathode for lithium ion batteries. Journal of Power Sources, 2012, 204: 127–132

    Article  Google Scholar 

  22. Sachs M, Gellert M, Chen M, Drescher H J, Kachel S R, Zhou H, Zugermeier M, Gorgoi M, Roling B, Gottfried J M. LiNi0.5Mn1.5O4 high-voltage cathode coated with Li4Ti5O12: a hard X-ray photoelectron spectroscopy (HAXPES) study. Physical Chemistry Chemical Physics, 2015, 17(47): 31790–31800

    Article  Google Scholar 

  23. Zhang Q, Jiang W, Zhou Z, Wang S, Guo X, Zhao S, Ma G. Enhanced electrochemical performance of Li4SiO4–coated LiFePO4 prepared by sol–gel method and microwave heating. Solid State Ionics, 2012, 218: 31–34

    Article  Google Scholar 

  24. Chatterjee S, Maiti R, Saha S K, Chakravorty D. Fast ion conduction in nanodimensional lithium silicate glasses. Journal of Physical Chemistry C, 2016, 120(1): 431–436

    Article  Google Scholar 

  25. Xu M Q, Lian Q W, Wu Y X, Ma C, Tan P F, Xia Q B, Zhang J F, Ivey D G, Wei W F. Li+-conductive Li2SiO3 stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6(41): 34245–34253

    Article  Google Scholar 

  26. Feng X Y, Shen C, Fang X, Chen C H. Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. Journal of Alloys and Compounds, 2011, 509(8): 3623–3626

    Article  Google Scholar 

  27. Xu Y H, Feng Q, Kajiyoshi K, Yanagisawa K. Hydrothermal intercalation reaction of nickel hydroxide into layered manganese oxides. Chemistry of Materials, 2002, 14(2): 697–703

    Article  Google Scholar 

  28. Ding B J, Fan LW, Lin Z Y, Wu Z G, Lv D, Lu Z X. Preparation of magnetic core–shell Fe3O4@SiO2 and its characterization. Synthetic Materials Aging and Application, 2015, 4: 44–47

    Google Scholar 

  29. Hong R Y, Qian J Z, Miao C C, Li H Z. Synthesis and surface modification of ZnO nanoparticles. Speciality Petrochemicals, 2005, 2: 1–4

    Google Scholar 

  30. Wang H Z, Nakamura H, Yao K, Uehara M, Nishimura S, Maeda H, Abe E. Effect of polyelectrolyte dispersants on the preparation of silica–coated zinc oxide particles in aqueous media. Journal of the American Ceramic Society, 2002, 85(8): 1937–1940

    Article  Google Scholar 

  31. Cui A L, Wang T J, Jin Y. TiO2 particle coating and structure analysis of surface coated with SiO2 and Al2O3. Engineering Chemistry & Metallugry, 1999, 20(2): 178–181

    Google Scholar 

  32. Li J X, Liu S, Luo F H. Methods and mechanism of inorganically coating nanometer TiO2. China Cermic Industry, 2005, 12(1): 40–44

    Google Scholar 

  33. Zou J, Gao J C, Wang Y, Li Y D, Wen M. Trial study on nanosize TiO2 coated by dense SiO2 film. Journal of Materials Science & Engineering, 2004, 22(1): 71–73

    Google Scholar 

  34. Zhang G D, Guan Y P, Shan G B, Tao A Z, Liu H Z. Surface modification of Fe3O4 nano particles and its applications in preparation of magnetic alumina catalyst supports. Chinese Journal of Process Engineering, 2002, 2(4): 319–324

    Google Scholar 

  35. Rimer J D, Lobo R F, Vlachos D G. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir, 2005, 21(19): 8960–8971

    Article  Google Scholar 

  36. Wang H L, Tan T A, Yang P, Lai M O, Lu L. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. Journal of Physical Chemistry C, 2011, 115(13): 6102–6110

    Article  Google Scholar 

  37. Yang S, Chen J, Liu Y, Yi B. Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetalorganic coordination-polymers as precursors. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(24): 9322–9330

    Article  Google Scholar 

  38. Zhuang Q C, Xu S D, Qiu X Y, Cui Y L, Fang L, Sun S. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries. Progressin Chemistry, 2010, 22(6): 1044–1057

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2013AA050901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ren, W. & Chen, J. Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries. Front. Energy 11, 374–382 (2017). https://doi.org/10.1007/s11708-017-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0494-2

Keywords

Navigation