Skip to main content
Log in

Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten groundbased observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Rem Sens, 41(2): 253–264

    Article  Google Scholar 

  • Bai WG, Zhang X Y, Zhang P (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin Sci Bull, 55(31): 3612–3618

    Article  Google Scholar 

  • Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150

    Article  Google Scholar 

  • Buchwitz M, de Beek R D, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A (2005a). Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos Chem Phys, 5(4): 941–962

    Article  Google Scholar 

  • Buchwitz M, de Beek R, Noël S, Burrows J P, Bovensmann H, Bremer H, Bergamaschi P, Körner S, Heimann M (2005b). Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmos Chem Phys, 5(12): 3313–3329

    Article  Google Scholar 

  • Butz A, Hasekamp O P, Frankenberg C, Aben I (2009). Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. Appl Opt, 48(18): 3322–3336

    Article  Google Scholar 

  • Chahine M, Barnet C, Olsen E T, Chen L, Maddy E (2005). On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys Res Lett, 32(22): L22803

    Article  Google Scholar 

  • Chalon G, Cayla F, Diebel D (2001). IASI: an advanced sounder for operational meteorology. In IAF, International Astronautical Congress, 52 nd, Toulouse, France

    Google Scholar 

  • Christi M J, Stephens G L (2004). Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: a preliminary case study. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D4)

  • Gerbig C, Lin J C, Wofsy S C, Daube B C, Andrews A E, Stephens B B, Bakwin P S, Grainger C A (2003). Toward constraining regionalscale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J Geophys Res, D, Atmospheres, 108(D24): 4756

    Google Scholar 

  • Grieco G, Masiello G, Matricardi M, Serio C (2013). Partially scanned interferogram methodology applied to IASI for the retrieval of CO, CO2, CH4 and N2O. Opt Express, 21(21): 24753–24769

    Article  Google Scholar 

  • Hilton F, Armante R, August T, Barnet C, Bouchard A, Camy-Peyret C, Capelle V, Clarisse L, Clerbaux C, Coheur P F, Collard A, Crevoisier C, Dufour G, Edwards D, Faijan F, Fourrié N, Gambacorta A, Goldberg M, Guidard V, Hurtmans D, Illingworth S, Jacquinet-Husson N, Kerzenmacher T, Klaes D, Lavanant L, Masiello G, Matricardi M, McNally A, Newman S, Pavelin E, Payan S, Péquignot E, Peyridieu S, Phulpin T, Remedios J, Schlüssel P, Serio C, Strow L, Stubenrauch C, Taylor J, Tobin D, Wolf W, Zhou D (2012). Hyperspectral earth observation from IASI: five years of accomplishments. Bull Am Meteorol Soc, 93(3): 347–370

    Article  Google Scholar 

  • IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151

    Google Scholar 

  • Kuang Z, Margolis J, Toon G, Crisp D, Yung Y (2002). Space borne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study. Geophys Res Lett, 29(15): 11-1–11-4

    Article  Google Scholar 

  • Kuze A, Suto H, Nakajima M, Hamazaki T (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt, 48(35): 6716–6733

    Article  Google Scholar 

  • Maddy E S, Barnet C D, Goldberg M, Sweeney C, Liu X (2008). CO2 retrievals from the atmospheric infrared sounder: methodology and validation. J Geophys Res, D, Atmospheres, 113(D11): D11301

    Article  Google Scholar 

  • O’Dell CW, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller C E, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon G C, Wennberg P O, Wunch D (2012). The ACOS CO2 retrieval algorithm–Part 1: description and validation against synthetic observations. Atmos Meas Tech, 5(1): 99–121

    Article  Google Scholar 

  • Olsen E T (2009). AIRS Version 5 Release Tropospheric CO2 Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

    Google Scholar 

  • Olsen E T, Fishbein E, Granger S, Lee S Y, Manning E, Weiler M, Blaisdell J, Susskind J. (2007). AIRS/AMSU/HSB Version 5 Data Release User Gui

  • de Olsen S C, Randerson J T (2004). Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research: Atmospheres (1984–2012), 109 (D2)

  • Phulpin T, Cayla F, Chalon G, Diebel D, Schlüssel P (2002). IASI on board Metop: project status and scientific preparation. In 12th International TOVS Study Conference, Lorne, Victoria, Australia (Vol. 26)

    Google Scholar 

  • Schlüssel P, Hultberg T H, Phillips P L, August T, Calbet X (2005). The operational IASI level 2 processor. Adv Space Res, 36(5): 982–988

    Article  Google Scholar 

  • Tiwari Y K, Gloor M, Engelen R J, Chevallier F, Rödenbeck C, Körner S, Peylin P, Braswell B H, Heimann M (2006). Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: implications for constraining surface fluxes and lower-to-upper troposphere transport. J Geophys Res, D, Atmospheres, 111(D17): D17106

    Article  Google Scholar 

  • Wang T, Shi J, Jing Y, Xie Y (2012). Investigation of the consistency of atmospheric CO2 retrievals from different space-based sensors: intercomparison and spatiotemporal analysis. Chin Sci Bull, 58(33): 4161–4170

    Article  Google Scholar 

  • WMO GAW Report No. 161 (2005). 12th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracers Measurement Techniques. Geneva: World Meteorological Organization

  • Zhou C, Shi R, Liu C, Gao W (2013). A correlation analysis of monthly mean CO2 retrieved from the Atmospheric Infrared Sounder with surface station measurements. Int J Remote Sens, 34(24): 8710–8723

    Article  Google Scholar 

  • Zhou M, Shu J, Song C, Gao W (2014). Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations. Journal of Applied Remote Sensing, 8: 083697-2–083697-16

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Basic Research Program of China (No. 2010CB951603) and the Major Program of National Social Science Foundation of China (No.13&ZD161). We thank Prof. Jietai Mao of the Department of Atmospheric & Oceanic Sciences, Peking University, China for providing expert advice and assistance.We also thank the WDCGG for providing the CO2 data. Many thanks to NASA for providing AIRS CO2 data and NOAA for providing IASI CO2 data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, A., Shu, J., Song, C. et al. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements. Front. Earth Sci. 11, 1–10 (2017). https://doi.org/10.1007/s11707-016-0573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-016-0573-4

Keywords

Navigation