Skip to main content
Log in

Regional climate model downscaling may improve the prediction of alien plant species distributions

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990–1999) to the future (2046–2055).

RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa (Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol, 43(6): 1223–1232

    Article  Google Scholar 

  • Araújo M B, Pearson R G, Thuiller W, Erhard M (2005). Validation of species-climate impact models under climate change. Glob Change Biol, 11(9): 1504–1513

    Article  Google Scholar 

  • Beaumont L J, Gallagher R V, Thuiller W, Downey P O, Leishman M R, Hughes L (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib, 15(3): 409–420

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity. Ecol Lett, 15(4): 365–377

    Article  Google Scholar 

  • Bromberg J E, Kumar S, Brown C S, Stohlgren T J (2011). Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park. Invasive Plant Science and Management, 4(2): 173–182

    Article  Google Scholar 

  • Collins W D, Bitz C M, Blackmon M L, Bonan G B, Bretherton C S, Carton J A, Chang P, Doney S C, Hack J J, Henderson T B, Kiehl J T, Large W G, McKenna D S, Santer B D, Smith R D (2006). The Community Climate System Model version 3 (CCSM3). J Clim, 19(11): 2122–2143

    Article  Google Scholar 

  • Cook D C, Thomas M B, Cunningham S A, Anderson D L, DeBarro P J (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecol Appl, 17(6): 1832–1840

    Article  Google Scholar 

  • Davis A J, Jenkinson L S, Lawton J H, Shorrocks B, Wood S (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391(6669): 783–786

    Article  Google Scholar 

  • Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, Phillips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberón J, Williams S, Wisz M S, Zimmermann N E (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151

    Article  Google Scholar 

  • Elith J, Leathwick J R (2009). Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst, 40(1): 677–697

    Article  Google Scholar 

  • Elith J, Phillips S J, Hastie T, Dudík M, Chee Y E, Yates C J (2011). A statistical explanation of Maxent for ecologists. Divers Distrib, 17(1): 43–57

    Article  Google Scholar 

  • Fielding A H, Bell J F (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 24(1): 38–49

    Article  Google Scholar 

  • Franklin J, Davis F W, Ikegami M, Syphard A D, Flint L E, Flint A L, Hannah L (2013). Modeling plant species distributions under future climates: how fine scale do climate projections need to be?. Glob Change Biol, 19(2): 473–483

    Article  Google Scholar 

  • Hernandez P C, Graham C, Master L, Albert D (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5): 773–785

    Article  Google Scholar 

  • Hijmans R J, Cameron S E, Parra J L, Jones P G, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25(15): 1965–1978

    Article  Google Scholar 

  • Holcombe T R, Stohlgren T J, Jarnevich C S (2010). From points to forecasts: predicting invasive species habitat suitability in the near term. Diversity, 2(5): 738–767

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The physical Science Basis. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M M B, Miller H L Jr., Chen Z, eds. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. New York: Cambridge University Press

    Google Scholar 

  • Jarnevich C S, Evangelista P, Stohlgren T J, Morisette J (2011). Improving national-scale invasion maps: tamarisk in the western United States. West N Am Nat, 71(2): 164–175

    Article  Google Scholar 

  • Jarnevich C S, Stohlgren T J (2009). Near term climate projections for invasive species distributions. Biol Invasions, 11(6): 1373–1379

    Article  Google Scholar 

  • Kumar S, Spaulding S A, Stohlgren T J, Hermann K A, Schmidt T S, Bahls L L (2009). Potential habitat distribution for the freshwater diatom Didymosphenia geminate in the continental US. Front Ecol Environ, 7(8): 415–420

    Article  Google Scholar 

  • Liang X Z, Li L, Kunkel K E, Ting M, Wang J X L (2004). Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: annual cycle. J Clim, 17(18): 3510–3529

    Article  Google Scholar 

  • Liang X-Z, Pan J, Zhu J, Kunkel K E, Wang J X L, Dai A (2006). Regional climate model downscaling of the U.S. summer climate and future change. Journal of Geophysical Research-Atmosphere, 111, D10108

    Article  Google Scholar 

  • Liang X Z, Xu M, Yuan X, Ling T, Choi H I, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y, Wang J X L, Kunkel K E, Gao W, Joseph E, Morris V, Yu TW, Dudhia J, Michalakes J (2012). Regional climate-weather research and forecasting model. Bull Am Meteorol Soc, 93(9): 1363–1387

    Article  Google Scholar 

  • Liu L, Berry PM, Dawson T P, Pearson R G (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3): 385–393

    Article  Google Scholar 

  • Mack R N, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz F A (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl, 10(3): 689–710

    Article  Google Scholar 

  • Manel S, Williams H C, Ormerod S J (2001). Evaluating presencesabsence models in ecology: the need to account for prevalence. J Appl Ecol, 38(5): 921–931

    Article  Google Scholar 

  • McPherson JM, Jetz W, Rogers D J (2004). The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol, 41(5): 811–823

    Article  Google Scholar 

  • Morisette J T, Jarnevich C S, Ullah A, Cai W, Pedelty J A, Gentle J, Stohlgren T J, Schnase J L (2006). A tamarisk habitat suitability map for the continental United States. Front Ecol Environ, 4(1): 11–17

    Article  Google Scholar 

  • Nix H A (1986). A biogeographic analysis of Australian elapid snakes. In: Longmore R, ed. Australian Flora and Fauna Series 8. Canberra: Australian Government Publishing Service

    Google Scholar 

  • Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42

    Article  Google Scholar 

  • Pearson R G, Dawson T P (2003). Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful?. Glob Ecol Biogeogr, 12(5): 361–371

    Article  Google Scholar 

  • Pearson R G, Thuiller W, Araújo M B, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson T P, Lees D C (2006). Model-based uncertainty in species range prediction. J Biogeogr, 33(10): 1704–1711

    Article  Google Scholar 

  • Phillips S J (2005). A brief tutorial on Maxent (from http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc).

    Google Scholar 

  • Phillips S J, Anderson R P, Schapire R E (2006). Maximum entropy modeling of species geographic distributions. Ecol Modell, 190(3–4): 231–259

    Article  Google Scholar 

  • Pielke R S Sr, Wilby R L (2012). Regional climate downscaling: what’s the point? Eos Transactions American Geophysical Union, 93(5): 52–53

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005). Update on the environmental and economic costs of associated with alien-invasive species in the United States. Ecol Econ, 52(3): 273–288

    Article  Google Scholar 

  • Rejmánek M, Pitcairn M J (2002). When is eradication of exotic pest plants a realistic goal? In: Veitch C R, Clout M N, eds. Turning the Tide: the Eradication of Invasive Species. Gland and Cambridge: IUCN SSC Invasive Species Specialist Group, 249–253

    Google Scholar 

  • Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C, Pounds J A (2003). Fingerprints of global warming on wild animals and plants. Nature, 421(6918): 57–60

    Article  Google Scholar 

  • Segurado P, Araújo M B (2004). An evaluation of methods for modelling species distributions. J Biogeogr, 31(10): 1555–1568

    Article  Google Scholar 

  • Stockwell D R B, Peterson A T (2002). Effects of sample size on accuracy of species distribution models. Ecol Modell, 148(1): 1–13

    Article  Google Scholar 

  • Stohlgren T J, Barnett D T, Jarnevich C S, Flather C, Kartesz J (2008). The myth of plant species saturation. Ecol Lett, 11(4): 313–322

    Article  Google Scholar 

  • Stohlgren T J, Pyšek P, Kartesz J, Nishino M, Pauchard A, Winter M, Pino J, Richardson D M, Wilson J R U, Murray B R, Phillips M L, Celesti-Grapow L, Graham J (2013). Globalization effects on common plant species. In: Levin S, ed. Encyclopedia of Biodiversity (Second Edition). Waltham, MA: Academic Press, 3: 700–706

    Chapter  Google Scholar 

  • Stohlgren T J, Schnase J L (2006). Risk analysis for biological hazards: what we need to know about invasive species. Risk Anal, 26(1): 163–173

    Article  Google Scholar 

  • Swets J A (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285–1293

    Article  Google Scholar 

  • Tebaldi C, Smith R, Nychka D, Mearns L O (2005). Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Clim, 18(10): 1524–1540

    Article  Google Scholar 

  • Thomas C D, Bodsworth E J, Wilson R J, Simmons A D, Davies Z G, Musche M, Conradt L (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411(6837): 577–581

    Article  Google Scholar 

  • Thomas C D, Cameron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y, Erasmus B F N, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A S, Midgley G F, Miles L J, Ortega-Huerta M A, Peterson A T, Philips O, Williams S E (2004). Extinction risk from climate change. Nature, 427(6970): 145–148

    Article  Google Scholar 

  • Thornton P E, Running S W, White M A (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol (Amst), 190(3–4): 214–251

    Article  Google Scholar 

  • Thuiller W (2003). BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol, 9(10): 1353–1362

    Article  Google Scholar 

  • Thuiller W (2004). Patterns and uncertainties of species’ ranges shifts under climate change. Glob Change Biol, 10(12): 2020–2027

    Article  Google Scholar 

  • Thuiller W, Richardson D M, Pyšek P, Midgley G F, Hughes G O, Rouget M (2005). Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol, 11(12): 2234–2250

    Article  Google Scholar 

  • Vose R S, Applequist S, Menne M J, Williams C N Jr, Thorne P (2012). An intercomparison of temperature trends in the U.S. historical climatology network and recent atmospheric reanalyses. Geophys Res Lett, 39(10): L10703

    Article  Google Scholar 

  • Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J, Fromentin J M, Hoegh-Guldberg O, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416(6879): 389–395

    Article  Google Scholar 

  • Wiley E O, McNyset K M, Peterson A T, Robins C R, Stewart A M (2003). Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography (Wash DC), 16(3): 120–127

    Article  Google Scholar 

  • Yates C J, McNeill A, Elith J, Midgley G F (2010). Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Divers Distrib, 16(1): 187–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liang, XZ., Gao, W. et al. Regional climate model downscaling may improve the prediction of alien plant species distributions. Front. Earth Sci. 8, 457–471 (2014). https://doi.org/10.1007/s11707-014-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0457-4

Keywords

Navigation