Skip to main content
Log in

Comparison of the spatial and temporal variability of macroinvertebrate and periphyton-based metrics in a macrophyte-dominated shallow lake

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The influence of spatial differences, which are caused by different anthropogenic disturbances, and temporal changes, which are caused by natural conditions, on macroinvertebrates with periphyton communities in Baiyangdian Lake was compared. Periphyton and macrobenthos assemblage samples were simultaneously collected on four occasions during 2009 and 2010. Based on the physical and chemical attributes in the water and sediment, the 8 sampling sites can be divided into 5 habitat types by using cluster analysis. According to coefficients variation analysis (CV), three primary conclusions can be drawn: (1) the metrics of Hilsenhoff Biotic Index (HBI), Percent Tolerant Taxa (PTT), Percent dominant taxon (PDT), and community loss index (CLI), based on macroinvertebrates, and the metrics of algal density (AD), the proportion of chlorophyta (CHL), and the proportion of cyanophyta (CYA), based on periphytons, were mostly constant throughout our study; (2) in terms of spatial variation, the CV values in the macroinvertebratebased metrics were lower than the CV values in the periphyton-based metrics, and these findings may be caused by the effects of changes in environmental factors; whereas, the CV values in the macroinvertebrate-based metrics were higher than those in the periphyton-based metrics, and these results may be linked to the influences of phenology and life history patterns of the macroinvertebrate individuals; and (3) the CV values for the functionalbased metrics were higher than those for the structuralbased metrics. Therefore, spatial and temporal variation for metrics should be considered when assessing applying the biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An K G, Park S S, Shin J Y (2002). An evaluation of a river health using the index of biological integrity along with relations to chemical and habitat conditions. Environ Int, 28(5): 411–420

    Article  Google Scholar 

  • Angermeier P L, Smogor R A, Stauffer J R (2000). Regional frameworks and candidate metrics for assessing biotic integrity in mid-Atlantic highland streams. T Am Fish Soc, 129(4): 962–981

    Article  Google Scholar 

  • Barbour M T, Gerritsen J, Griffith G E, Frydenborg R, McCarron E, White J S, Bastian M L (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc, 15: 185–211

    Article  Google Scholar 

  • Barbour M T, Gerritsen J, Snyder B D, Stribling J B (1999). Rapid Bioassessment Protocols for Use in Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish (2nd ed). EPA 841/B-99/002. US Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Bazzanti M, Seminara M (1995). Eutrophication in a deep, meromictic lake (Lake Albano, Central Italy): spatial-temporal patterns of profundal benthic community as a tool for assessing environmental stress in the hypolimnion. Limnologica Jena, 25(11): 21–31

    Google Scholar 

  • Beck M W, Hatch L K (2009). A review of research on the development of lake indices of biotic integrity. Environ Rev, 17: 21–44

    Article  Google Scholar 

  • Beck M W, Hatch L K, Vondracek B, Valley R D (2010). Development of a macrophyte-based index of biotoc integrity for Minnesota Lakes. Ecol Indic, 10(5): 968–979

    Article  Google Scholar 

  • Berkman H E, Rabeni C F (1987). Effects of siltation on stream fish communities. Environ Biol Fishes, 18: 285–294

    Article  Google Scholar 

  • Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005). 15 years of ponds assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquat Conserv: Mar Freshw Ecosyst, 15(6): 693–714

    Article  Google Scholar 

  • Blocksom K A, Kurtenbach J P, Klemm D J, Fulk F A, Cormier S M (2002). Development and evaluation of the Lake Macroinvertebrate Integrity Index (LMII) for New Jersey lakes and reservoirs. Environ Monit Assess, 77(3): 311–333

    Article  Google Scholar 

  • Borja Á (2005). The European Water Framework Directive: a challenge for nearshore, coastal and continental shelf research. Cont Shelf Res, 25(14): 1768–1783

    Article  Google Scholar 

  • Borja A, Franco J, Pérez V (2000). A marine biotic index to eatablish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pollut Bull, 40(12): 1100–1114

    Article  Google Scholar 

  • Brinkhurst R O, Hamilton A L, Herrington H B (1968). Components of the bottom fauna of the St. Lawrence, Great Lakes. No. PR33, Great Lakes Institute, University of Toronto, Toronto, ON, Canada, 50

    Google Scholar 

  • Brodersen K P, Dall P C, Lindegaard C (2008). The fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshw Biol, 39: 577–592

    Article  Google Scholar 

  • Cheruvelil K S, Sorano P A, Madsen J D, Roberson M J (2002). Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J N Am Benthol Soc, 21: 261–277

    Article  Google Scholar 

  • China Bureau of Environmental Protection (CBEP) (2002). Methods for monitoring and analysis of water and wastewater (4th ed). Beijing: China Environmental Science Press, 246–248 (in Chinese)

    Google Scholar 

  • Chinese Academy of Sciences (CAS) (1978). Soil map of China (edited by the Nanjing Institute of Soil Science, Chinese Academy of Sciences). Beijing: Cartographic Publishing House (digital version published 1996 by State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing)

    Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R V, Paruelo J, Raskin R G, Sutton P, van den Belt M (1998). The value of the world’s ecosystem services and natural capital. Ecol Econ, 25(1): 3–15

    Article  Google Scholar 

  • Cyr H, Downing J A (1988). Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can J Fish Aquat Sci, 45: 976–984

    Article  Google Scholar 

  • De Lange H J, De Haas E M, Maas H, Peeters E T H M (2005). Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo. Chemosphere, 61(11): 1700–1709

    Article  Google Scholar 

  • De Szalay F A, Resh V H (2000). Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshw Biol, 45(3): 295–308

    Article  Google Scholar 

  • Diehl S (1992). Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology, 73(5): 1646–1661

    Article  Google Scholar 

  • Fano E A, Mistri M, Rossi R (2003). The ecofunctional quality index (EQI): a new tool for assessing lagoonal ecosystem impairment. Estuar Coast Shelf S, 56(3–4): 709–716

    Article  Google Scholar 

  • Fellows C, Clapcott J, Udy J, Bunn S, Harch B, Smith M, Davies P (2006). Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia, 572(1): 71–87

    Article  Google Scholar 

  • Findlay S, Sinsabaugh R L (2006). Large-scale variation in subsurface stream biofilms: a cross-regional comparison of metabolic function and community similarity. Microb Ecol, 52(3): 491–500

    Article  Google Scholar 

  • Gabriels W, Lock K, De Pauw N, Goethals P L M (2010). Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica-Ecology Management of Inl Waters, 40(3): 199–207

    Article  Google Scholar 

  • Gérard C (2000). Dynamics and structure of a benthic macroinvertebrate community in a lake after drought. J Freshwat Ecol, 15: 65–69

    Article  Google Scholar 

  • Gilinsky E (1984). The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology, 65(2): 455–468

    Article  Google Scholar 

  • Gold C, Feurtet-Mazel A, Coste M, Boudou A (2002). Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water Res, 36(14): 3654–3664

    Article  Google Scholar 

  • Griffith M B, Hill B H, McCormick F H, Kaufmann P R, Herlihy A T, Selle A R (2005). Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol Indic, 5(2): 117–136

    Article  Google Scholar 

  • Hamalainen H, Luotonen H, Koskenniemi E, Liljaniem P (2003). Interannual variation in macroinvertebrate communities in a shallow forest lake in eastern Finland during 1990–2001. Hydrobiologia, 506/509: 389–397

    Article  Google Scholar 

  • Heino J (2000). Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia, 418: 229–242

    Article  Google Scholar 

  • Hill B H, Herlihy A T, Kaufmann P R, Stevenson J R, Mccormick F H, Johnson C B (2000). Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc, 19: 50–67

    Article  Google Scholar 

  • Hilsenhoff W L (1987). An improved biotic index of organic stream pollution. Great Lakes Entomol, 30: 31–39

    Google Scholar 

  • Hornung J P, Foote A L (2006). Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands with implications for waterbird productivity. Wetlands, 26: 1–12

    Article  Google Scholar 

  • Institute of Soil Science, Chinese Academy of Sciences (1978). Physical and Chemical Analysis of Soil. Shanghai: Shanghai Science and Technology Press, 132–136 (In Chinese)

    Google Scholar 

  • Iwaniec D M, Childers D L, Rondeau D, Madden C J, Saunders C (2006). Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. Hydrobiologia, 569: 223–235

    Article  Google Scholar 

  • Johnson R K (1998). Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecol Appl, 8(1): 61–70

    Article  Google Scholar 

  • Jongman R H, Ter Braak C J F, Van Tongeren O F R (1987). Data analysis in community and landscape ecology, Pudoc, Wageningen, 91–173

    Google Scholar 

  • Karr J R (1981). Assessment of biotic integrity using fish communities. Fisheries (Bethesda, Md), 6: 21–27

    Article  Google Scholar 

  • Kashian D R, Burton T M (2000). A comparison of macroinvertebrates of two Great Lakes coastal wetlands: testing potential metrics for and index of ecological integrity. J Great Lakes Res, 26(4): 460–481

    Article  Google Scholar 

  • Kelly M, Bennion H, Burgess A, Ellis J, Juggins S, Guthrie R, Jamieson J, Adriaenssens V, Yallop M (2009). Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia, 633: 5–15

    Article  Google Scholar 

  • Kireta A R, Reavie E D, Sgro G V, Angradi T R, Bolgrien D W, Hill B H, Jicha T M (2012). Planktonic and periphytic diatoms as indicators of stress on great rivers of the United States: testing water quality and disturbance models. Ecol Indic, 13(1): 222–231

    Article  Google Scholar 

  • Kornijów R (1989). Seasonal changes in the macrofauna living on submerged plants in two lakes of different trophy. Arch Hydrobiol, 117: 49–61

    Google Scholar 

  • Kröncke I, Reiss H (2010). Influence of macrofauna long-term natural variability on benthic indices used in ecological quality assessment. Mar Pollut Bull, 60(1): 58–68

    Article  Google Scholar 

  • Ledger M E, Hildrew A G (1998). Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshwater Biol, 40(4): 655–670

    Article  Google Scholar 

  • Lewis P A, Klemm D J, Thoeny W T (2001). Perspectives on use of a multimetric lake bioassessment integrity index using benthic macroinvertebrates. Northeastern Naturalist, 8(2): 233–246

    Article  Google Scholar 

  • Lu R K (2000). Methods for Soil Agricultural Chemistry Analysis. Beijing: Chinese Agricultural Science and Technology Press

    Google Scholar 

  • Lunde K B, Resh V H (2012). Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands. Environ Monit Assess, 184(6): 3653–3674

    Article  Google Scholar 

  • Ma M Y, Liu J L, Wang X M (2011). Biofilms as potential indicators of macrophyte-dominated lake health. Ecotoxicology, 20(5): 982–992

    Article  Google Scholar 

  • Mason W T, Lewis P A Jr, Anderson J B (1971). Maconinvertebrate collections and water quality in the Ohio River Basin, 1963–1967. Office of Technical Programs, AQC Laboratory, Water Quality Office, US Environmental Protection Agency, Cincinnati, OH. 52 pp., Appendix A-1 to A-65

    Google Scholar 

  • Melaas C L, Zimmer K D, Butler M G, Hanson M A (2001). Effects of rotenone on aquatic invertebrate communities in prairie wetlands. Hydrobiologia, 459(1–3): 177–186

    Article  Google Scholar 

  • Moore M J C, Langrehr H A, Angradi T R (2012). A submersed macrophyte index of condition for the Upper Mississippi River. Ecol Indic, 13(1): 196–205

    Article  Google Scholar 

  • O’Connor R J, Walls T E, Hughes R M (1998). Using multiple taxonomic groups to index the ecological condition of lakes. Environ Monit Assess, 61: 207–228

    Article  Google Scholar 

  • Plafkin J L, Barbour M T, Porter K D, Gross S K, Hughes R M (1989). Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPS/440/4-89/001. US Environmental Protection Agency, Washington, DC. 1-1 to 8-19 pp., Appendices A-1 to 1-42

    Google Scholar 

  • Rennie M D, Jackson L J (2005). The influence of habitat complexity on littoral invertebrate distributions: pattern differs in shallow prairie lakes with and without fish. Can J Fish Aquat Sci, 62: 2088–2099

    Article  Google Scholar 

  • Rothrock P E, Simon T P, Stewart P M (2008). Development, calibration, and validation of a littoral zone plant index of biotic integrity (PIBI) for lacustrine wetlands. Ecol Indic, 8(1): 79–88

    Article  Google Scholar 

  • Seele J, Mayr M, Staab F, Raeder U (2000). Combination of two indication systems in pre-alpine lakes-diatom index and macrophyte index. Ecol Model, 130(1–3): 145–149

    Article  Google Scholar 

  • Sierra M V, Gomez N (2007). Structual characteristics and oxygen consumption of the epipelic biofilm in three lowland streams exposed to different land uses. Water Air Soil Pollut, 186(1): 115–127

    Article  Google Scholar 

  • Sorace A, Formichetti P, Boano A, Andreani P, Gramegna C, Mancini L (2002). The presence of a river bird, the dipper, in relation to water quality and biotic indices in central Italy. Environ Pollut, 118(1): 89–96

    Article  Google Scholar 

  • Tangen B A, Bulter M G, Michael J E (2003). Weak correspondence between macroinvertebrate assemblages and land use in Prairie Pothole Region wetlands. USA. Wetlands, 23: 104–115

    Article  Google Scholar 

  • Tipping B, Bass J A B, Hardie D, Haworth E Y, Hurley M A, Wills G (2002). Biological responses to the reversal of acidification in surface waters of the English Lake District. Environ Pollut, 116(1): 137–146

    Article  Google Scholar 

  • Tolonen K T, Hämäläinen H, Holopainen I J, Karjalainen J (2001). Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Arch Hydrobiol, 152: 39–67

    Google Scholar 

  • Tolonen K T, Hämäläinen H, Holopainen I J, Mikkonen K, Karjalainen J (2003). Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia, 499(1–3): 179–190

    Article  Google Scholar 

  • Townsend C R, Hildrew A G (1994). Species traits in relation to a habitat templet for river systems. Freshw Biol, 31(3): 265–275

    Article  Google Scholar 

  • Trigal C, García-Criado F, Fernández-Aláez C (2006). Among-habitat and temporal variability of selected macroinvertebrate based metrics in a Mediterranean shallow lake (NW Spain). Hydrobiologia, 563(1): 371–384

    Article  Google Scholar 

  • Trigal C, García-Criado F, Fernández-Aláez C (2007). Macroinvertebrate communities of mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshw Biol, 52(10): 2042–2055

    Article  Google Scholar 

  • USEPA (1998a). Environmental monitoring and assessment programsurface waters: field operations and methods for measuring the ecological conditions of wadeable streams, EPA/620/R-94/004F, U. S.EPA, Research Triangle Park, North Carolina

    Google Scholar 

  • USEPA (1998b). Lake and reservoir bioassessment and biocriteria: Technical Guidance Document, EPA 841-B-98-007, USEPA, Washington, D.C.

    Google Scholar 

  • USEPA (1999). Rapid bioassessment protocols for use in wadeable streams and rivers, EPA 841-B-99-002, U.S.EPA, Washington, D.C.

    Google Scholar 

  • Wallace J B, Anderson N H (1996). Habitat, life history, and behavioral adaptations of aquatic insects. In: Merritt RW, Cummins KW, eds. An Introduction to the Aquatic Insects of North America (3rd ed). Dubuque: Kendall/Hunt Publishing Co., 41–73

    Google Scholar 

  • Wefering F M, Danielson L E, White N M (2000). Using the AMOEBA approach to measure progress toward ecosystem sustainability within a shellfish restoration project in North Carolina. Ecol Model, 130(1–3): 157–166

    Article  Google Scholar 

  • White J, Irvine K (2003). The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquat Conserv, 13(4): 331–351

    Article  Google Scholar 

  • Xu F L, Tao S, Dawson R W, Li P G, Cao J (2001). Lake ecosystem health assessment: indicators and methods. Water Res, 35(13): 3157–3167

    Article  Google Scholar 

  • Zhang L L, Liu J L, Yang Z F, Li Y, Yang Y (2013). Integrated ecosystem health assessment of a macrophyte-dominated lake. Ecol Model, 242: 141–152

    Article  Google Scholar 

  • Zhou Q F, Zhang J B, Fu J J, Shi J B, Jiang G B (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta, 606(2): 135–150

    Article  Google Scholar 

  • Zimmer K D, Hanson M A, Butler M G, Duffy W G (2001). Size distribution of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production. Freshw Biol, 46(10): 1373–1386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingling Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, J. & Li, Y. Comparison of the spatial and temporal variability of macroinvertebrate and periphyton-based metrics in a macrophyte-dominated shallow lake. Front. Earth Sci. 9, 137–151 (2015). https://doi.org/10.1007/s11707-014-0369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0369-3

Keywords

Navigation