Skip to main content
Log in

Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A novel hierarchical structure of bimetal sulfide FeS2@SnS2 with the 1D/2D heterostructure was developed for high-performance sodium-ion batteries (SIBs). The FeS2@SnS2 was synthesized through a hydrothermal reaction and a sulphuration process. The exquisite 1D/2D heterostructure is featured with 2D SnS2 nanoflakes anchoring on the 1D FeS2 nanorod. This well-designed FeS2@SnS2 provides shortened ion diffusion pathway and adequate surface area, which facilitates the Na+ transport and capacitive Na+ storage. Besides, the FeS2@SnS2 integrates the 1D/2D synthetic structural advantages and synthetic hybrid active material. Consequently, the FeS2@SnS2 anode exhibits high initial specific capacity of 765.5 mAh·g−1 at 1 A·g−1 and outstanding reversibility (506.0 mAh·g−1 at 1 A·g−1 after 200 cycles, 262.5 mAh·g−1 at 5 A·g−1 after 1400 cycles). Moreover, the kinetic analysis reveals that the FeS2@SnS2 anode displays significant capacitive behavior which boosts the rate capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Y J, Ma Y, Giuli G, et al. Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Advanced Energy Materials, 2020, 10(25): 2000783

    Article  CAS  Google Scholar 

  2. Ku K, Kim B, Jung S K, et al. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy & Environmental Science, 2020, 13(4): 1269–1278

    Article  CAS  Google Scholar 

  3. Jia Y, Ma Z, Li Z, et al. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries. Frontiers of Materials Science, 2019, 13(4): 367–374

    Article  Google Scholar 

  4. Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. Journal of the American Chemical Society, 2019, 141(15): 6338–6344

    Article  CAS  Google Scholar 

  5. Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 2020, 32(7): 1905923

    Article  CAS  Google Scholar 

  6. Lu Z X, Zhai Y J, Wang N N, et al. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 380: 122455

    Article  CAS  Google Scholar 

  7. Yang C, Xin S, Mai L, et al. Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11(2): 2000974

    Article  CAS  Google Scholar 

  8. Xu X, Lin K, Zhou D, et al. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6(4): 902–918

    Article  CAS  Google Scholar 

  9. Liu P, Han J, Zhu K, et al. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Advanced Energy Materials, 2020, 10(24): 2000741

    Article  CAS  Google Scholar 

  10. Lu X, Luo J, Matios E, et al. Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69: 104446

    Article  CAS  Google Scholar 

  11. Zhai H, Jiang H, Qian Y, et al. Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Materials Chemistry and Physics, 2020, 240: 122139

    Article  CAS  Google Scholar 

  12. Chen W Y, Jiang X, Lai S N, et al. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11(1): 1302

    Article  CAS  Google Scholar 

  13. Wang F B, Li G D, Cui W F. FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21(6): 121

    Article  Google Scholar 

  14. Lin Z, Xiong X, Fan M, et al. Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11(9): 3773–3779

    Article  CAS  Google Scholar 

  15. Wang S W, Jing Y P, Han L F, et al. Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6(2): 459–464

    Article  CAS  Google Scholar 

  16. Zang R, Li P X, Guo X, et al. Yolk-shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(23): 14051–14059

    Article  CAS  Google Scholar 

  17. Cao L, Gao X, Zhang B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano, 2020, 14(3): 3610–3620

    Article  CAS  Google Scholar 

  18. Luo B, Hu Y X, Zhu X B, et al. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(4): 1462–1472

    Article  CAS  Google Scholar 

  19. Wu Y T, Nie P, Wu L Y, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334: 932–938

    Article  CAS  Google Scholar 

  20. Wang S, Liu S, Li X, et al. SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chemistry, 2018, 24(15): 3873–3881

    Article  CAS  Google Scholar 

  21. Zhang X, Zhou J, Zheng Y, et al. Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(8): 9236–9247

    Article  CAS  Google Scholar 

  22. Xia J, Jiang K, Xie J, et al. Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 359: 1244–1251

    Article  CAS  Google Scholar 

  23. Ma M, Zhang S, Yao Y, et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Advanced Materials, 2020, 32(22): 2000958

    Article  CAS  Google Scholar 

  24. Zhao Y, Wang F, Wang C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56: 426–433

    Article  CAS  Google Scholar 

  25. Yang C, Liang X, Ou X, et al. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Advanced Functional Materials, 2019, 29(9): 1807971

    Article  Google Scholar 

  26. Ren X C, Wang J S, Zhu D M, et al. Sn−C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy, 2018, 54: 322–330

    Article  CAS  Google Scholar 

  27. Liu Y H, Yu X Y, Fang Y J, et al. Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule, 2018, 2(4): 725–735

    Article  CAS  Google Scholar 

  28. Zhao Y, Wang J J, Ma C L, et al. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378: 122168

    Article  CAS  Google Scholar 

  29. Liu Y, Kang H, Jiao L, et al. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7(4): 1325–1332

    Article  CAS  Google Scholar 

  30. Chen C M, Yang Y C, Tang X, et al. Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small, 2019, 15(10): 1804740

    Article  Google Scholar 

  31. Zeng L, Zhang L P, Liu X G, et al. SnS2 nanocrystalline-anchored three-dimensional graphene for sodium batteries with improved rate performance. Nanomaterials, 2020, 10(12): 2336

    Article  CAS  Google Scholar 

  32. Li Y F, Wang S G, Shi Y H, et al. In situ chemically encapsulated and controlled SnS2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49(44): 15874–15882

    Article  CAS  Google Scholar 

  33. Shao M, Cheng Y, Zhang T, et al. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Applied Materials & Interfaces, 2018, 10(39): 33097–33104

    Article  CAS  Google Scholar 

  34. Wang S W, Jing Y P, Han L F, et al. Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6(2): 459–464

    Article  CAS  Google Scholar 

  35. Liu Y, Hu X, Zhong G, et al. Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24271–24280

    Article  CAS  Google Scholar 

  36. Ren X, Zhu Y, Li Q, et al. A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(23): 11598–11606

    Article  CAS  Google Scholar 

  37. Gao P, Zhang Y Y, Wang L P, et al. In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy, 2017, 32: 302–309

    Article  CAS  Google Scholar 

  38. Li J, Han L, Li Y, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chemical Engineering Journal, 2020, 380: 122590

    Article  CAS  Google Scholar 

  39. Cao L, Zhang B, Ou X, et al. Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small, 2019, 15(9): 1804861

    Article  Google Scholar 

  40. Zhao J, Yu X, Gao Z G, et al. One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chemical Engineering Journal, 2018, 332: 548–555

    Article  CAS  Google Scholar 

  41. Xue P, Wang N, Fang Z, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19(3): 1998–2004

    Article  CAS  Google Scholar 

  42. Xu X, Zhao R S, Chen B, et al. Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Advanced Materials, 2019, 31(17): 1900526

    Article  Google Scholar 

  43. Liu Y L, Wang N N, Zhao X H, et al. Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(5): 2843–2850

    Article  CAS  Google Scholar 

  44. Wang N, Wang Y, Xu X, et al. Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(11): 9353–9361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21501101 and 52004100), the Natural Science Foundation of Henan Province (Grant No. 182300410226), and Nanyang Normal University (Grant No. 2022ZX007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxiao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zhao, Z., Liu, G. et al. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries. Front. Mater. Sci. 16, 220593 (2022). https://doi.org/10.1007/s11706-022-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0593-9

Keywords

Navigation