Skip to main content
Log in

Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The design and development of multifunctional nano-drug delivery systems (NDDSs) is a solution that is expected to solve some intractable problems in traditional cancer treatment. In particular, metal-organic frameworks (MOFs) are novel hybrid porous nanomaterials which are constructed by the coordination of metal cations or clusters and organic bridging ligands. Benefiting from their intrinsic superior properties, MOFs have captivated intensive attentions in drug release and cancer theranostic. Based on what has been achieved about MOF-based DDSs in recent years, this review introduces different stimuli-responsive mechanisms of them and their applications in cancer diagnosis and treatment systematically. Moreover, the existing challenges and future opportunities in this field are summarized. By realizing industrial production and paying attention to biosafety, their clinical applications will be enriched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He H, Xie H, Chen Y, et al. Global, regional, and national burdens of bladder cancer in 2017: Estimates from the 2017 global burden of disease study. BMC Public Health, 2020, 20(1): 1693

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249

    Google Scholar 

  3. Zhang M, Ma Y, Wang Z, et al. A CD44-targeting programmable drug delivery system for enhancing and sensitizing chemotherapy to drug-resistant cancer. ACS Applied Materials & Interfaces, 2019, 11(6): 5851–5861

    Article  CAS  Google Scholar 

  4. Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. European Journal of Medicinal Chemistry, 2019, 176: 268–291

    Article  CAS  Google Scholar 

  5. Obayemi J D, Salifu A A, Eluu S C, et al. LHRH-conjugated drugs as targeted therapeutic agents for the specific targeting and localized treatment of triple negative breast cancer. Scientific Reports, 2020, 10(1): 8212

    Article  CAS  Google Scholar 

  6. Mittra I, Pal K, Pancholi N, et al. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin. Annals of Oncology, 2017, 28(9): 2119–2127

    Article  CAS  Google Scholar 

  7. Ding Y, Ma Y, Du C, et al. NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies. Acta Biomaterialia, 2021, 123: 335–345

    Article  CAS  Google Scholar 

  8. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588

    Article  CAS  Google Scholar 

  9. Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology, 2021, 69: 166–177

    Article  CAS  Google Scholar 

  10. Liu H, Jiang W, Wang Q, et al. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomaterials Science, 2019, 7(9): 3706–3716

    Article  CAS  Google Scholar 

  11. Pandey A, Kulkarni S, Vincent A P, et al. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. International Journal of Pharmaceutics, 2020, 588: 119735

    Article  CAS  Google Scholar 

  12. Sanfilippo V, Caruso V C L, Cucci L M, et al. Hyaluronan-metal gold nanoparticle hybrids for targeted tumor cell therapy. International Journal of Molecular Sciences, 2020, 21(9): 3085–3111

    Article  CAS  Google Scholar 

  13. Chen J, Ma Y, Du W, et al. Furin-instructed intracellular gold nanoparticle aggregation for tumor photothermal therapy. Advanced Functional Materials, 2020, 30(50): 2001566

    Article  CAS  Google Scholar 

  14. Kong M, Huang Y, Yu R, et al. Coordination bonding-based Fe3O4@PDA-Zn2+-doxorubicin nanoparticles for tumor chemophotothermal therapy. Journal of Drug Delivery Science and Technology, 2019, 51: 185–193

    Article  CAS  Google Scholar 

  15. Wen W, Wu L, Chen Y, et al. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. Journal of Drug Delivery Science and Technology, 2020, 58: 101782

    Article  CAS  Google Scholar 

  16. Guan Y, Yang Y, Wang X, et al. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. Journal of Molecular Liquids, 2021, 327: 114783

    Article  CAS  Google Scholar 

  17. Huang L, Liu J, Gao F, et al. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(28): 4618–4629

    Article  CAS  Google Scholar 

  18. Shao M, Chang C, Liu Z, et al. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110427

    Article  CAS  Google Scholar 

  19. Chen K, Chang C, Liu Z, et al. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111166

    Article  CAS  Google Scholar 

  20. Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Materials, 2018, 7(20): 1800525

    Article  CAS  Google Scholar 

  21. Loh K P, Ho D, Chiu G N C, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Advanced Materials, 2018, 30(47): 1802368

    Article  CAS  Google Scholar 

  22. Jiang B P, Zhou B, Lin Z, et al. Recent advances in carbon nanomaterials for cancer phototherapy. Chemistry, 2019, 25(16): 3993–4004

    Article  CAS  Google Scholar 

  23. Zhao S, Cao W, Xing S, et al. Enhancing effects of theanine liposomes as chemotherapeutic agents for tumor therapy. ACS Biomaterials Science & Engineering, 2019, 5(7): 3373–3379

    Article  CAS  Google Scholar 

  24. Zhang K, Zhang Y, Meng X, et al. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials, 2018, 185: 301–309

    Article  CAS  Google Scholar 

  25. Yang Y, Liu X, Ma W, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials, 2021, 265: 120456

    Article  CAS  Google Scholar 

  26. Yang L, Zhang C, Liu J, et al. ICG-conjugated and 125I-labeled polymeric micelles with high biosafety for multimodality imaging-guided photothermal therapy of tumors. Advanced Healthcare Materials, 2020, 9(5): 1901616

    Article  CAS  Google Scholar 

  27. Hu C, Zhuang W, Yu T, et al. Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(24): 5267–5279

    Article  CAS  Google Scholar 

  28. Zhong S, Chen C, Yang G, et al. Acid-triggered nanoexpansion polymeric micelles for enhanced photodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(37): 33697–33705

    Article  CAS  Google Scholar 

  29. Li X, Zhang Y, Zhi X, et al. Analysis of clinical efficacy of nano-albumin paclitaxel treatment for advanced cell lung cancer. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6019–6025

    Article  CAS  Google Scholar 

  30. Zhou Y, Chang C, Liu Z, et al. Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy. Langmuir, 2021, 37(8): 2619–2628

    Article  CAS  Google Scholar 

  31. Zhang L, Shi X, Zhang Z, et al. Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angewandte Chemie International Edition, 2021, 60(10): 5489–5496

    Article  CAS  Google Scholar 

  32. Gulcay E, Erucar I. Biocompatible MOFs for storage and separation of O2: A molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(8): 3225–3237

    Article  CAS  Google Scholar 

  33. Daglar H, Gulbalkan H C, Avci G, et al. Effect of metal-organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs. Angewandte Chemie International Edition, 2021, 60(14): 7828–7837

    Article  CAS  Google Scholar 

  34. Hao M, Qiu M, Yang H, et al. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333

    Article  CAS  Google Scholar 

  35. Neufeld M J, Winter H, Landry M R, et al. Lanthanide metal-organic frameworks for multispectral radioluminescent imaging. ACS Applied Materials & Interfaces, 2020, 12(24): 26943–26954

    Article  CAS  Google Scholar 

  36. Gao X, Cui R, Ji G, et al. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale, 2018, 10(13): 6205–6211

    Article  CAS  Google Scholar 

  37. Kumar P, Anand B, Tsang Y F, et al. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176: 108488

    Article  CAS  Google Scholar 

  38. Schnabel J, Ettlinger R, Bunzen H. Zn-MOF-74 as pH-responsive drug-delivery system of arsenic trioxide. Chem-NanoMat, 2020, 6(8): 1229–1236

    CAS  Google Scholar 

  39. Liu Z, Li T, Han F, et al. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomaterials Science, 2019, 7(9): 3683–3692

    Article  CAS  Google Scholar 

  40. Xiao Y, Xu M, Lv N, et al. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomaterialia, 2021, 122: 291–305

    Article  CAS  Google Scholar 

  41. Liang S, Xiao X, Bai L, et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Advanced Materials, 2021, 33(18): 2100333

    Article  CAS  Google Scholar 

  42. Sun Q, Bi H, Wang Z, et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials, 2019, 223: 119473

    Article  CAS  Google Scholar 

  43. Jiang Z, Wang T, Yuan S, et al. A tumor-sensitive biological metal-organic complex for drug delivery and cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(32): 7189–7196

    Article  CAS  Google Scholar 

  44. Pan W, Shi M, Li Y, et al. A GSH-responsive nanophotosensitizer for efficient photodynamic therapy. RSC Advances, 2018, 8 (74): 42374–42379

    Article  CAS  Google Scholar 

  45. Yu L Y, Shen Y A, Chen M H, et al. The feasibility of ROS- and GSH-responsive micelles for treating tumor-initiating and metastatic cancer stem cells. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(19): 3109–3118

    Article  CAS  Google Scholar 

  46. Sameiyan E, Bagheri E, Dehghani S, et al. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomaterialia, 2021, 123: 110–122

    Article  CAS  Google Scholar 

  47. Yuwen L, Qiu Q, Xiu W, et al. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomaterials Science, 2021, 9 (12): 4484–4495

    Article  CAS  Google Scholar 

  48. Zhang N, Li M, Sun X, et al. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials, 2018, 159: 25–36

    Article  CAS  Google Scholar 

  49. Ding Y, Du C, Qian J, et al. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Letters, 2019, 19(7): 4362–4370

    Article  CAS  Google Scholar 

  50. Zhang W, Lu J, Gao X, et al. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angewandte Chemie International Edition, 2018, 57(18): 4891–4896

    Article  CAS  Google Scholar 

  51. Sabz M, Kamali R, Ahmadizade S. Numerical simulation of magnetic drug targeting to a tumor in the simplified model of the human lung. Computer Methods and Programs in Biomedicine, 2019, 172: 11–24

    Article  CAS  Google Scholar 

  52. Shen S, Huang D, Cao J, et al. Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(7): 1096–1106

    Article  CAS  Google Scholar 

  53. Nguyen Cao T G, Kang J H, You J Y, et al. Safe and targeted sonodynamic cancer therapy using biocompatible exosome-based nanosonosensitizers. ACS Applied Materials & Interfaces, 2021, 13(22): 25575–25588

    Article  CAS  Google Scholar 

  54. Mathesh M, Sun J, van der Sandt F, et al. Supramolecular nanomotors with “pH taxis” for active drug delivery in the tumor microenvironment. Nanoscale, 2020, 12(44): 22495–22501

    Article  CAS  Google Scholar 

  55. Yan T, Zhu S, Hui W, et al. Chitosan based pH-responsive polymeric prodrug vector for enhanced tumor targeted co-delivery of doxorubicin and siRNA. Carbohydrate Polymers, 2020, 250: 116781

    Article  CAS  Google Scholar 

  56. Lázaro I A, Haddad S, Sacca S, et al. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem, 2017, 2(4): 561–578

    Article  CAS  Google Scholar 

  57. Jiang K, Zhang L, Hu Q, et al. Indocyanine green-encapsulated nanoscale metal-organic frameworks for highly effective chemophotothermal combination cancer therapy. Materials Today Nano, 2018, 2: 50–57

    Article  Google Scholar 

  58. Yu S, Wang S, Xie Z, et al. Hyaluronic acid coating on the surface of curcumin-loaded ZIF-8 nanoparticles for improved breast cancer therapy: An in vitro and in vivo study. Colloids and Surfaces B: Biointerfaces, 2021, 203: 111759

    Article  CAS  Google Scholar 

  59. Qin Y T, Peng H, He X W, et al. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(37): 34268–34281

    Article  CAS  Google Scholar 

  60. Zhu J, Li H, Xiong Z, et al. Polyethyleneimine-coated manganese oxide nanoparticles for targeted tumor PET/MR imaging. ACS Applied Materials & Interfaces, 2018, 10(41): 34954–34964

    Article  CAS  Google Scholar 

  61. Liu Z, Shen N, Tang Z, et al. An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomaterials Science, 2019, 7(7): 2803–2811

    Article  CAS  Google Scholar 

  62. Lin C, He H, Zhang Y, et al. Acetaldehyde-modified-cystine functionalized Zr-MOFs for pH/GSH dual-responsive drug delivery and selective visualization of GSH in living cells. RSC Advances, 2020, 10(6): 3084–3091

    Article  CAS  Google Scholar 

  63. Li J, Wang Y, Sun S, et al. Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. The Analyst, 2020, 145(8): 2982–2987

    Article  CAS  Google Scholar 

  64. Lei B, Wang M, Jiang Z, et al. Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery. ACS Applied Materials & Interfaces, 2018, 10(19): 16698–16706

    Article  CAS  Google Scholar 

  65. Liu Y, Gong C S, Dai Y, et al. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218: 119365–119375

    Article  CAS  Google Scholar 

  66. Deng J, Wang K, Wang M, et al. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. Journal of the American Chemical Society, 2017, 139(16): 5877–5882

    Article  CAS  Google Scholar 

  67. Song X R, Li S H, Dai J, et al. Polyphenol-inspired facile construction of smart assemblies for ATP- and pH-responsive tumor MR/Optical imaging and photothermal therapy. Small, 2017, 13(20): 1603997

    Article  CAS  Google Scholar 

  68. Chen W H, Yu X, Cecconello A, et al. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chemical Science, 2017, 8(8): 5769–5780

    Article  CAS  Google Scholar 

  69. Chen W H, Liao W C, Sohn Y S, et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Advanced Functional Materials, 2018, 28(8): 1705137

    Article  CAS  Google Scholar 

  70. Wan S S, Zhang L, Zhang X Z. An ATP-regulated ion transport nanosystem for homeostatic perturbation therapy and sensitizing photodynamic therapy by autophagy inhibition of tumors. ACS Central Science, 2019, 5(2): 327–340

    Article  CAS  Google Scholar 

  71. Zuo W, Chen D, Fan Z, et al. Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomaterialia, 2020, 111: 327–340

    Article  CAS  Google Scholar 

  72. Lv W, Xia H, Zou L, et al. Yolk-shell structured Au nanorods@mesoporous silica for gas bubble driven drug release upon near-infrared light irradiation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32: 102326

    Article  CAS  Google Scholar 

  73. Zhu X, Su Q, Feng W, et al. Anti-Stokes shift luminescent materials for bio-applications. Chemical Society Reviews, 2017, 46(4): 1025–1039

    Article  CAS  Google Scholar 

  74. Xu J, Gulzar A, Liu Y, et al. Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small, 2017, 13(36): 17018141

    Article  CAS  Google Scholar 

  75. Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Advanced Functional Materials, 2017, 27(14): 1606314

    Article  CAS  Google Scholar 

  76. Park J, Jiang Q, Feng D, et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. Journal of the American Chemical Society, 2016, 138(10): 3518–3525

    Article  CAS  Google Scholar 

  77. Liu J, Yang Y, Zhu W, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97: 1–9

    Article  CAS  Google Scholar 

  78. Li B, Wang X, Chen L, et al. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics, 2018, 8(15): 4086–4096

    Article  CAS  Google Scholar 

  79. Wang Y, Shi L, Ma D, et al. Tumor-activated and metal-organic framework assisted self-assembly of organic photosensitizers. ACS Nano, 2020, 14(10): 13056–13068

    Article  CAS  Google Scholar 

  80. Yang D, Xu J, Yang G, et al. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. Chemical Engineering Journal, 2018, 344: 363–374

    Article  CAS  Google Scholar 

  81. Huang J, Xu Z, Jiang Y, et al. Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemophotothermal cancer therapy. Journal of Nanobiotechnology, 2021, 19(1): 219

    Article  CAS  Google Scholar 

  82. Cai X, Xie Z, Ding B, et al. Monodispersed copper(I)-based nano metal-organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy. Advanced Science, 2019, 6(15): 1900848

    Article  CAS  Google Scholar 

  83. Cai X, Jiang Y, Lin M, et al. Ultrasound-responsive materials for drug/gene delivery. Frontiers in Pharmacology, 2020, 10: 1650

    Article  CAS  Google Scholar 

  84. Cui X, Han X, Yu L, et al. Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today, 2019, 28: 100773

    Article  Google Scholar 

  85. Ibrahim M, Sabouni R, Husseini G A, et al. Facile ultrasound-triggered release of calcein and doxorubicin from iron-based metal-organic frameworks. Journal of Biomedical Nanotechnology, 2020, 16(9): 1359–1369

    Article  CAS  Google Scholar 

  86. Zhou Y, Wang M, Dai Z. The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Materials Chemistry Frontiers, 2020, 4(8): 2223–2234

    Article  CAS  Google Scholar 

  87. Huang C, Ding S, Jiang W, et al. Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy. Nanoscale, 2021, 13(8): 4512–4518

    Article  CAS  Google Scholar 

  88. Pan X, Wang W, Huang Z, et al. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multi-modal imaging-guided sonodynamic therapy. Angewandte Chemie International Edition, 2020, 59(32): 13557–13561

    Article  CAS  Google Scholar 

  89. Ke X, Song X, Qin N, et al. Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery. Journal of Porous Materials, 2019, 26(3): 813–818

    Article  CAS  Google Scholar 

  90. Aghayi-Anaraki M, Safarifard V. Fe3O4@MOF magnetic nanocomposites: Synthesis and applications. European Journal of Inorganic Chemistry, 2020, 2020(20): 1916–1937

    Article  CAS  Google Scholar 

  91. Xiang Z, Qi Y, Lu Y, et al. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: Magnetic-triggered synergistic hyperthermia and chemotherapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(37): 8671–8683

    Article  Google Scholar 

  92. Lin R, Yu W, Chen X, et al. Self-propelled micro/nanomotors for tumor targeting delivery and therapy. Advanced Healthcare Materials, 2021, 10(1): 2001212

    Article  CAS  Google Scholar 

  93. Xu J, Lee S S, Seo H, et al. Quinic acid-conjugated nanoparticles enhance drug delivery to solid tumors via interactions with endothelial selectins. Small, 2018, 14(50): 1803601

    Article  CAS  Google Scholar 

  94. Park J, Choi Y, Chang H, et al. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26): 8073–8090

    Article  CAS  Google Scholar 

  95. Xue T, Xu C, Wang Y, et al. Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomaterials Science, 2019, 7(11): 4615–4623

    Article  CAS  Google Scholar 

  96. Liu P, Zhou Y, Shi X, et al. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. Journal of Nanobiotechnology, 2021, 19(1): 149

    Article  CAS  Google Scholar 

  97. Yan J, Liu C, Wu Q, et al. Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Analytical Chemistry, 2020, 92(16): 11453–11461

    Article  CAS  Google Scholar 

  98. Xu W, Lou Y, Chen W, et al. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomedical Engineerin/Biomedizinische Technik, 2020, 65(2): 229–236

    Article  CAS  Google Scholar 

  99. Samui A, Pal K, Karmakar P, et al. In situ synthesized lactobionic acid conjugated NMOFs, a smart material for imaging and targeted drug delivery in hepatocellular carcinoma. Materials Science and Engineering C, 2019, 98: 772–781

    Article  CAS  Google Scholar 

  100. Zhang H, Zhang Q, Liu C, et al. Preparation of a one-dimensional nanorod/metal organic framework Janus nanoplatform via side-specific growth for synergistic cancer therapy. Biomaterials Science, 2019, 7(4): 1696–1704

    Article  CAS  Google Scholar 

  101. He Y, Xiong T, He S, et al. Pulmonary targeting crosslinked cyclodextrin metal-organic frameworks for lung cancer therapy. Advanced Functional Materials, 2021, 31(3): 2004550

    Article  CAS  Google Scholar 

  102. Zhang Y, Lin L, Liu L, et al. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216: 119255–119263

    Article  CAS  Google Scholar 

  103. Kim K, Lee S, Jin E, et al. MOF × biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Applied Materials & Interfaces, 2019, 11(31): 27512–27520

    Article  CAS  Google Scholar 

  104. Wu M, Liu X, Bai H, et al. Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Applied Materials & Interfaces, 2019, 11(10): 9850–9859

    Article  CAS  Google Scholar 

  105. Chai Z, Hu X, Lu W. Cell membrane-coated nanoparticles for tumor-targeted drug delivery. Science China Materials, 2017, 60(6): 504–510

    Article  CAS  Google Scholar 

  106. Wan X, Song L, Pan W, et al. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano, 2020, 14(9): 11017–11028

    Article  CAS  Google Scholar 

  107. Owens E A, Henary M, El Fakhri G, et al. Tissue-specific near-infrared fluorescence imaging. Accounts of Chemical Research, 2016, 49(9): 1731–1740

    Article  CAS  Google Scholar 

  108. Liu J, Liu Z, Wu D. Multifunctional hypoxia imaging nanoparticles: multifunctional tumor imaging and related guided tumor therapy. International Journal of Nanomedicine, 2019, 14: 707–719

    Article  Google Scholar 

  109. Sun J, Wang J, Hu W, et al. Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Applied Materials & Interfaces, 2021, 13(9): 10778–10795

    Article  CAS  Google Scholar 

  110. Ouyang Z, Li D, Xiong Z, et al. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Applied Materials & Interfaces, 2021, 13(5): 6069–6080

    Article  CAS  Google Scholar 

  111. Zhou G, Wang Y S, Jin Z, et al. Porphyrin-palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horizons, 2019, 4(5): 1185–1193

    Article  CAS  Google Scholar 

  112. Wang Y, Wu W, Mao D, et al. Metal-organic framework assisted and tumor microenvironment modulated synergistic image-guided photo-chemo therapy. Advanced Functional Materials, 2020, 30(28): 2002431

    Article  CAS  Google Scholar 

  113. Chen Y, Li Z H, Pan P, et al. Tumor-microenvironment-triggered ion exchange of a metal-organic framework hybrid for multi-modal imaging and synergistic therapy of tumors. Advanced Materials, 2020, 32(24): 2001452

    Article  CAS  Google Scholar 

  114. Peller M, Böll K, Zimpel A, et al. Metal-organic framework nanoparticles for magnetic resonance imaging. Inorganic Chemistry Frontiers, 2018, 5(8): 1760–1779

    Article  CAS  Google Scholar 

  115. McLeod S M, Robison L, Parigi G, et al. Maximizing magnetic resonance contrast in Gd(III) nanoconjugates: Investigation of proton relaxation in zirconium metal-organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(37): 41157–41166

    Article  CAS  Google Scholar 

  116. Yao J, Liu Y, Wang J, et al. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials, 2019, 195: 51–62

    Article  CAS  Google Scholar 

  117. Ebrahimpour A, Riahi Alam N, Abdolmaleki P, et al. Magnetic metal-organic framework based on zinc and 5-aminolevulinic acid: MR imaging and brain tumor therapy. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(3): 1208–1216

    Article  CAS  Google Scholar 

  118. Zhou H, Qi M, Shao J, et al. Manganese oxide/metal-organic frameworks-based nanocomposites for tumr micro-environment sensitive 1H/19F dual-mode magnetic resonance imaging in vivo. Journal of Organometallic Chemistry, 2021, 933: 121652

    Article  CAS  Google Scholar 

  119. Guo C, Xu S, Arshad A, et al. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging. Chemical Communications, 2018, 54(70): 9853–9856

    Article  CAS  Google Scholar 

  120. Zhu W, Chen M, Liu Y, et al. A dual factor activated metal-organic framework hybrid nanoplatform for photoacoustic imaging and synergetic photo-chemotherapy. Nanoscale, 2019, 11(43): 20630–20637

    Article  CAS  Google Scholar 

  121. Pu Y, Zhu Y, Qiao Z, et al. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2021, 9(7): 1846–1857

    Article  CAS  Google Scholar 

  122. Wan S S, Cheng Q, Zeng X, et al. A Mn(III)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano, 2019, 13(6): 6561–6571

    Article  CAS  Google Scholar 

  123. Zhu Y, Xin N, Qiao Z, et al. Bioactive MOFs based theranostic agent for highly effective combination of multimodal imaging and chemo-phototherapy. Advanced Healthcare Materials, 2020, 9(14): 2000205

    Article  CAS  Google Scholar 

  124. Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Applied Materials & Interfaces, 2017, 9(3): 2040–2051

    Article  CAS  Google Scholar 

  125. Sun X, He G, Xiong C, et al. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy. ACS Applied Materials & Interfaces, 2021, 13(3): 3679–3693

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51773162 and 21204071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Li, C., Chen, Y. et al. Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review. Front. Mater. Sci. 15, 374–390 (2021). https://doi.org/10.1007/s11706-021-0568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0568-2

Keywords

Navigation