Skip to main content
Log in

Twofold bioinspiration of TiO2-PDA hybrid fabrics with desirable robustness and remarkable polar/nonpolar liquid separation performance

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The fundamental relationship between microstructure, constituent, processing and performances of separating materials is really a vital issue. Traditional preparation methods for separation membranes are complex, time-consuming and easy to be fouled. Also, the durability of conventional coatings on membrane is poor. By combination of bioinspiration from mussel adhesive and fish scales’ underwater superoleophobicity, we propose a general route to prepare organic-inorganic hybrid coatings, while no complex apparatus is needed. Specifically, based on the biomimetic adhesion of polydopamine (PDA), we used it as a binder to adhere TiO2 nanoparticles and built rough microstructure on fabric. In this way, we obtained TiO2-PDA treated fabric with special wettability. These TiO2-PDA treated samples owned superamphiphilicity in air, underwater superoleophobicity (underwater oil contact angles (OCAs) > 150°), underoil superhydrophobicity (underoil water contact angles (WCAs)> 150°), excellent multiresistance; and can separate polar/nonpolar liquid mixture effectively. It also owned superaerophobicity underwater (underwater bubble contact angles (BCAs) > 150°). The proposed TiO2-PDA coatings are highly expected to be employed for real situation of water pollution remediation, self-cleaning, oil extraction and harsh chemical engineering issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Si Y, Dong Z, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science, 2018, 4(9): 1102–1112

    Article  CAS  Google Scholar 

  2. Liu N, Chen Y, Lu F, et al. Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. ChemPhysChem, 2013, 14(15): 3489–3494

    Article  CAS  Google Scholar 

  3. Li J, Yan L, Li H, et al. Underwater superoleophobic palygorskite coated meshes for efficient oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14696–14702

    Article  CAS  Google Scholar 

  4. Kontturi E, Laaksonen P, Linder M B, et al. Advanced materials through assembly of nanocelluloses. Advanced Materials, 2018, 30(24): 1703779

    Article  Google Scholar 

  5. Huang P, Wu F, Shen B, et al. Biomimetic porous polypropylene foams with special wettability properties. Composites Part B: Engineering, 2020, 190: 107927

    Article  CAS  Google Scholar 

  6. Si Y, Guo Z. Superwetting materials of oil-water emulsion separation. Chemistry Letters, 2015, 44(7): 874–883

    Article  CAS  Google Scholar 

  7. Peng Y, Guo Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(41): 15749–15770

    Article  CAS  Google Scholar 

  8. Dudchenko A V, Rolf J, Shi L, et al. Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: An experimental and theoretical study. ACS Nano, 2015, 9(10): 9930–9941

    Article  CAS  Google Scholar 

  9. Zhang W, Zhu Y, Liu X, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie International Edition, 2014, 53(3): 856–860

    Article  CAS  Google Scholar 

  10. Arumugham T, Kaleekkal N J, Rana D, et al. Separation of oil/water emulsions using nano MgO anchored hybrid ultrafiltration membranes for environmental abatement. Journal of Applied Polymer Science, 2016, 133(1): 42848

    Article  Google Scholar 

  11. Zhao Y, Zhang M, Wang Z. Underwater superoleophobic membrane with enhanced oil-water separation, antimicrobial, and antifouling activities. Advanced Materials Interfaces, 2016, 3(13): 1500664

    Article  Google Scholar 

  12. Wang S, Liu K, Yao X, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chemical Reviews, 2015, 115(16): 8230–8293

    Article  CAS  Google Scholar 

  13. Padaki M, Murali R S, Abdullah M S, et al. Membrane technology enhancement in oil-water separation. A review. Desalination, 2015, 357: 197–207

    Article  CAS  Google Scholar 

  14. Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 2009, 21(6): 665–669

    Article  CAS  Google Scholar 

  15. Chen C, Weng D, Mahmood A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Applied Materials & Interfaces, 2019, 11(11): 11006–11027

    Article  CAS  Google Scholar 

  16. Tie L, Li J, Liu M, et al. Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(25): 11682–11687

    Article  CAS  Google Scholar 

  17. Xu Z, Zhao Y, Wang H, et al. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation. Angewandte Chemie International Edition, 2015, 54(15): 4527–4530

    Article  CAS  Google Scholar 

  18. Ge B, Ren G, Yang H, et al. Fabrication of BiOBr-silicone aerogel photocatalyst in an aqueous system with degradation performance by sol-gel method. Science China: Technological Sciences, 2020, 63(5): 859–865

    Article  CAS  Google Scholar 

  19. Liu M, Li J, Hou Y, et al. Inorganic adhesives for robust superwetting surfaces. ACS Nano, 2017, 11(1): 1113–1119

    Article  CAS  Google Scholar 

  20. Kuang Y, Chen C, Chen G, et al. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Advanced Functional Materials, 2019, 29(16): 1900162

    Article  Google Scholar 

  21. Zheng W, Fan H, Wang L, et al. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir, 2015, 31(42): 11671–11677

    Article  CAS  Google Scholar 

  22. Guo F, Wen Q, Peng Y, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(41): 21866–21874

    Article  CAS  Google Scholar 

  23. Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014, 114(9): 5057–5115

    Article  CAS  Google Scholar 

  24. Lv X, Jiao Y, Wu S, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning. ACS Applied Materials & Interfaces, 2019, 11(22): 20574–20580

    Article  CAS  Google Scholar 

  25. Yong J, Singh S C, Zhan Z, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water. ACS Applied Materials & Interfaces, 2019, 11(8): 8667–8675

    Article  CAS  Google Scholar 

  26. Huo J, Yang Q, Yong J, et al. Underwater superaerophobicity/superaerophilicity and unidirectional bubble passage based on the femtosecond laser-structured stainless steel mesh. Advanced Materials Interfaces, 2020, 7(14): 1902128

    Article  CAS  Google Scholar 

  27. Della Vecchia N F, Luchini A, Napolitano A, et al. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 2014, 30(32): 9811–9818

    Article  CAS  Google Scholar 

  28. Xue Z, Cao Y, Liu N, et al. Special wettable materials for oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(8): 2445–2460

    Article  CAS  Google Scholar 

  29. Wang B, Liang W, Guo Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 2015, 44(1): 336–361

    Article  Google Scholar 

  30. Liu Z, Qin D, Zhao J, et al. Efficient oil/water separation membrane derived from super-flexible and superhydrophilic core-shell organic/inorganic nanofibrous architectures. Polymers, 2019, 11(6): 974

    Article  CAS  Google Scholar 

  31. Salomäki M, Marttila L, Kivelä H, et al. Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach. The Journal of Physical Chemistry B, 2018, 122(24): 6314–6327

    Article  Google Scholar 

  32. Liebscher J, Mrówczyński R, Scheidt H A, et al. Structure of polydopamine: A never-ending story? Langmuir, 2013, 29(33): 10539–10548

    Article  CAS  Google Scholar 

  33. Zhao J, Xu J, Jian X, et al. NIR light-driven photocatalysis on amphiphilic TiO2 nanotubes for controllable drug release. ACS Applied Materials & Interfaces, 2020, 12(20): 23606–23616

    Article  CAS  Google Scholar 

  34. Wang Z X, Yang H C, He F, et al. Mussel-inspired surface engineering for water-remediation materials. Matter, 2019, 1(1): 115–155

    Article  Google Scholar 

  35. Lin X, Chen Y, Liu N, et al. In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2 nanocluster-based mesh. Nanoscale, 2016, 8(16): 8525–8529

    Article  CAS  Google Scholar 

  36. Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 2003, 142(3): 327–333

    Article  Google Scholar 

  37. Peng T, Zhang J, Ray S, et al. Optimizing one-dimensional TiO2 for photocatalytic hydrogen production from a water-ethanol mixture and other electron donors. Journal of Environmental Chemical Engineering, 2019, 7(1): 102868

    Article  CAS  Google Scholar 

  38. Bickley R I, Gonzalez-Carreno T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991, 92(1): 178–190

    Article  CAS  Google Scholar 

  39. Kang S, Baginska M, White S R, et al. Core-shell polymeric microcapsules with superior thermal and solvent stability. ACS Applied Materials & Interfaces, 2015, 7(20): 10952–10956

    Article  CAS  Google Scholar 

  40. Chen J H, Zhou Y, Zhou C L, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chemical Engineering Journal, 2019, 370: 1218–1227

    Article  CAS  Google Scholar 

  41. Jung Y C, Bhushan B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir, 2009, 25(24): 14165–14173

    Article  CAS  Google Scholar 

  42. Karagounis G. Separation of polar from non-polar molecules. Nature, 1948, 161(4100): 855

    Article  CAS  Google Scholar 

  43. Shan X, Liu J, Mu H, et al. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angewandte Chemie International Edition, 2020, 59(4): 1659–1665

    Article  CAS  Google Scholar 

  44. Zheng Z, Yang H, Cao Y, et al. Laser-induced wettability gradient surface of the aluminum matrix used for directional transportation and collection of underwater bubbles. ACS Omega, 2020, 5(1): 718–725

    Article  CAS  Google Scholar 

  45. Chen M Y, Jia Z H, Zhang T, et al. Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability. Soft Matter, 2018, 14(36): 7462–7468

    Article  CAS  Google Scholar 

  46. Liang M, He C, Dai J, et al. A high-strength double network polydopamine nanocomposite hydrogel for adhesion under sea-water. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(36): 8232–8241

    Article  CAS  Google Scholar 

  47. Cheng C, Li S, Nie S, et al. General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. Biomacromolecules, 2012, 13(12): 4236–4246

    Article  CAS  Google Scholar 

  48. Fox M A, Chen C C, Younathan J N N. Oxidative cleavage of substituted naphthalenes induced by irradiated semiconductor powders. Journal of Organic Chemistry, 1984, 49(11): 1969–1974

    Article  CAS  Google Scholar 

  49. Atta A M, Shaker N O, Maysour N E. Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Progress in Organic Coatings, 2006, 56(2–3): 100–110

    Article  CAS  Google Scholar 

  50. Ma L, He J, Wang J, et al. Functionalized superwettable fabric with switchable wettability for efficient oily wastewater purification, in situ chemical reaction system separation, and photo-catalysis degradation. ACS Applied Materials & Interfaces, 2019, 11(46): 43751–43765

    Article  CAS  Google Scholar 

  51. Liu C, Takagi R, Shintani T, et al. Organic liquid mixture separation using an aliphatic polyketone-supported polyamide organic solvent reverse osmosis (OSRO) membrane. ACS Applied Materials & Interfaces, 2020, 12(6): 7586–7594

    Article  Google Scholar 

  52. Ge B, Han L, Gao B, et al. A mesoporous SiO2/TiO2 composite used for various emulsions separation. Separation Science and Technology, 2019, 54(6): 962–969

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51705138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchao Yang.

Additional information

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Chen, S., Zhang, X. et al. Twofold bioinspiration of TiO2-PDA hybrid fabrics with desirable robustness and remarkable polar/nonpolar liquid separation performance. Front. Mater. Sci. 15, 124–137 (2021). https://doi.org/10.1007/s11706-021-0534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0534-z

Keywords

Navigation