Skip to main content
Log in

Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The Ti/Y modified CuO-based negative temperature coefficient (NTC) thermistors, Cu0.988-2yY0.008Ti y O (TYCO; y = 0.01, 0.015, 0.03, 0.05 and 0.07), were synthesized through a wet-chemical method followed by a traditional ceramic sintering technology. The related phase component and electrical properties were investigated. XRD results show that the TYCO ceramics have a monoclinic structure as that of CuO crystal. The TYCO ceramics can be obtained at the sintering temperature 970°C-990°C, and display the typical NTC characteristic. The NTC thermal-sensitive constants of TYCO thermistors can be adjusted from 1112 to 3700 K by changing the amount of Ti in the TYCO ceramics. The analysis of complex impedance spectra revealed that both the bulk effect and grain boundary effect contribute to the electrical behavior and the NTC effect. Both the band conduction and electron-hopping models are proposed for the conduction mechanisms in the TYCO thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 2009, 92(5): 967–983

    Article  Google Scholar 

  2. Muralidharan M N, Rohini P R, Sunny E K, et al. Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceramics International, 2012, 38(8): 6481–6486

    Article  Google Scholar 

  3. Golestani-Fard F, Azimi S, Mackenzie K J D. Oxygen evolution during the formation and sintering of nickel–manganese oxide spinels for thermistor applications. Journal of Materials Science, 1987, 22(8): 2847–2851

    Article  Google Scholar 

  4. Feltz A, Pölzl W. Spinel forming ceramics of the system FexNiyMn3–x–yO4 for high temperature NTC thermistor applications. Journal of the European Ceramic Society, 2000, 20(14): 2353–2366

    Article  Google Scholar 

  5. Fang D L, Chen C S, Winnubst A J A. Preparation and electrical properties of FexCu0.10Ni0.66Mn2.24–xO4 (0≤x≤0.90) NTC ceramics. Journal of Alloys and Compounds, 2008, 454(1): 286–291

    Article  Google Scholar 

  6. Park K, Han I H. Effect of Al2O3 addition on the microstructure and electrical properties of (Mn0.37Ni0.3Co0.33–xAlx)O4 (0≤x≤0.03) NTC thermistors. Materials Science and Engineering B, 2005, 119(1): 55–60

    Article  Google Scholar 

  7. Elilarassi R, Chandrasekaran G. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Frontiers of Materials Science, 2013, 7(2): 196–201

    Article  Google Scholar 

  8. Macklen E D. Electrical conductivity and cation distribution in nickel manganite. Journal of Physics and Chemistry of Solids, 1986, 47(11): 1073–1079

    Article  Google Scholar 

  9. Jung J, Töpfer J, Mürbe J, et al. Microstructure and phase development in NiMn2O4 spinel ceramics during isothermal sintering. Journal of the European Ceramic Society, 1990, 6(6): 351–359

    Article  Google Scholar 

  10. Fau P, Bonino J P, Demai J J, et al. Thin films of nickel manganese oxide for NTC thermistor applications. Applied Surface Science, 1993, 65: 319–324

    Article  Google Scholar 

  11. Basu A, Brinkman A W, Schmidt R. Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3–xO4+δ thin films. Journal of the European Ceramic Society, 2004, 24(6): 1247–1250

    Article  Google Scholar 

  12. Xue D, Zhang H, Li Y, et al. Electrical properties of hexagonal BaTi1–xFexO3–δ (x = 0.1, 0.2, 0.3) ceramics with NTC effect. Journal of Materials Science: Materials in Electronics, 2012, 23 (7): 1306–1312

    Google Scholar 

  13. Nobre M A L, Lanfredi S. Negative temperature coefficient thermistor based on Bi3Zn2Sb3O14 ceramic: an oxide semiconductor at high temperature. Applied Physics Letters, 2003, 82(14): 2284–2286

    Article  Google Scholar 

  14. Wang J, Zhang H, Xue D, et al. Electrical properties of hexagonal BaTi0.8Co0.2O3–δ ceramic with NTC effect. Journal of Physics D: Applied Physics, 2009, 42(23): 235103–235109

    Article  Google Scholar 

  15. Ouyang P, Zhang H, Xue D, et al. NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3 composite materials. Journal of Materials Science: Materials in Electronics, 2013, 24(10): 3932–3939

    Google Scholar 

  16. Upadhyay S, Parkash O, Kumar D. Synthesis, structure and electrical behaviour of lanthanum-doped barium stannate. Journal of Physics D: Applied Physics, 2004, 37(10): 1483–1491

    Article  Google Scholar 

  17. Zhang J, Zhang H, Yang B, et al. Temperature sensitivity of Fesubstituted SnO2-based ceramics as negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4935–4942

    Google Scholar 

  18. Ouyang P, Zhang H, Zhang Y, et al. Zr-substituted SnO2-based NTC thermistors with wide application temperature range and high property stability. Journal of Materials Science: Materials in Electronics, 2015, 26(8): 6163–6169

    Google Scholar 

  19. Zhang Y, Wu Y, Zhang H, et al. Characterization of negative temperature coefficient of resistivity in (Sn1–xTix)0.95Sb0.05O2 (x≤0.1) ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5552–5559

    Google Scholar 

  20. Ghijsen J, Tjeng L H, van Elp J, et al. Electronic structure of Cu2O and CuO. Physical Review B: Condensed Matter and Materials Physics, 1988, 38(16): 11322–11330

    Article  Google Scholar 

  21. Dubal D P, Gund G S, Holze R, et al. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources, 2013, 242: 687–698

    Article  Google Scholar 

  22. Chen W, Zhang H, Ma Z, et al. High electrochemical performance and lithiation–delithiation phase evolution in CuO thin films for Li-ion storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(27): 14202–14209

    Article  Google Scholar 

  23. Sumikura S, Mori S, Shimizu S, et al. Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2–3): 143–147

    Article  Google Scholar 

  24. Anandan S, Wen X, Yang S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dyesensitized solar cells. Materials Chemistry and Physics, 2005, 93 (1): 35–40

    Article  Google Scholar 

  25. He H, Bourges P, Sidis Y, et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2Cu6+δ. Science, 2002, 295(5557): 1045–1047

    Article  Google Scholar 

  26. Ramirez-Ortiz J, Ogura T, Medina-Valtierra J, et al. A catalytic application of Cu2O and CuO films deposited over fiberglass. Applied Surface Science, 2001, 174(3–4): 177–184

    Article  Google Scholar 

  27. Patil S J, Patil A V, Dighavkar C G, et al. Semiconductor metal oxide compounds based gas sensors: A literature review. Frontiers of Materials Science, 2015, 9(1): 14–37

    Article  Google Scholar 

  28. Yang B, Zhang H, Zhang J, et al. Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 10151–10158

    Google Scholar 

  29. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, 1976, 32(5): 751–767

    Article  Google Scholar 

  30. Prasad N V, Prasad G, Bhimasankaram T, et al. Synthesis and electrical properties of SmBi5Fe2Ti3O18. Modern Physics Letters B, 1998, 12(10): 371–381

    Article  Google Scholar 

  31. Martínez R, Kumar A, Palai R, et al. Impedance spectroscopy analysis of Ba0.7Sr03TiO3/La0.7Sr0.3MnO3 heterostructure. Journal of Physics D: Applied Physics, 2011, 44(10): 105302–105310

    Article  Google Scholar 

  32. Azam A, Ahmed A S, Ansari M S, et al. Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. Journal of Alloys and Compounds, 2010, 506(1): 237–242

    Article  Google Scholar 

  33. Behera B, Nayak P, Choudhary R N P. Structural and impedance properties of KBa2V5O15 ceramics. Materials Research Bulletin, 2008, 43(2): 401–410

    Article  Google Scholar 

  34. Jonscher A K. The “universal” dielectric response. Nature, 1977, 267(5613): 673–679

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, H., Guo, J. et al. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors. Front. Mater. Sci. 10, 413–421 (2016). https://doi.org/10.1007/s11706-016-0355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0355-7

Keywords

Navigation