Skip to main content
Log in

Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol (KA oil) is a challenging issue in the chemical industry. At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is normally controlled at less than 5% selectivity. Thus, the development of highly active and stable catalysts for the aerobic oxidation of cyclohexane is necessary to overcome this low-efficiency process. Therefore, we have developed a cobalt-nitrogen co-doped porous sphere catalyst, Co-NC-x (x is the Zn/Co molar ratio, where x = 0, 0.5, 1, 2, and 4) by pyrolyzing resorcinol-formaldehyde resin microspheres. It achieved 88.28% cyclohexanone and cyclohexanol selectivity and a cyclohexane conversion of 8.88% under Co-NC-2. The results showed that the introduction of zinc effectively alleviated the aggregation of Co nanoparticles and optimized the structural properties of the material. In addition, Co0 and pyridinic-N are proposed to be the possible active species, and their proportion efficiently increased in the presence of Zn2+ species. In this study, we developed a novel strategy to design highly active catalysts for cyclohexane oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz R S, Guerreiro M C, Mandelli D, Spinacé E V, Pires E L. Cyclohexane oxidation continues to be a challenge. Applied Catalysis A, General, 2001, 211(1): 1–17

    Article  CAS  Google Scholar 

  2. Suresh A K, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Industrial & Engineering Chemistry Research, 2000, 39(11): 3958–3997

    Article  CAS  Google Scholar 

  3. Li H, She Y, Wang T. Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane. Frontiers of Chemical Science and Engineering, 2012, 6(3): 356–368

    Article  CAS  Google Scholar 

  4. Li X H, Chen J S, Wang X, Sun J, Antonietti M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. Journal of the American Chemical Society, 2011, 133(21): 8074–8077

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Chen M, Zhang B, Nie R, Huang A, Goh T W, Volkov A, Zhang Z, Ren Q, Huang W. Allylic oxidation of olefins with a manganese-based metal-organic framework. Green Chemistry, 2019, 21(13): 3629–3636

    Article  CAS  Google Scholar 

  6. Niu X R, Li J, Zhang L, Lei Z T, Zhao X L, Yang C H. ZSM-5 functionalized in situ with manganese ions for the catalytic oxidation of cyclohexane. RSC Advances, 2017, 7(80): 50619–50625

    Article  CAS  ADS  Google Scholar 

  7. Yao F, Xu L, Luo J, Li X, An Y, Wan C. Biosynthesized Au/TiO2@SBA-15 catalysts for selective oxidation of cyclohexane with O2. Korean Journal of Chemical Engineering, 2018, 35(4): 853–858

    Article  CAS  Google Scholar 

  8. Liu L, Arenal R, Meira D M, Corma A. Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications, 2019, 55(11): 1607–1610

    Article  CAS  PubMed  Google Scholar 

  9. Hong Y, Fang Y, Zhou X, Du G, Mai J, Sun D, Shao Z. Ionic liquid-modified Co/ZSM-5 catalyzed the aerobic oxidation of cyclohexane: toward improving the activity and selectivity. Industrial & Engineering Chemistry Research, 2019, 58(43): 19832–19838

    Article  CAS  Google Scholar 

  10. Guo X, Xu M, She M, Zhu Y, Shi T, Chen Z, Peng L, Guo X, Lin M, Ding W. Morphology-reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane. Angewandte Chemie International Edition, 2020, 59(7): 2606–2611

    Article  CAS  PubMed  Google Scholar 

  11. Niu X, Sun Y, Lei Z, Qin G, Yang C. Facile synthesis of hierarchical hollow Mn-ZSM-5 zeolite for enhanced cyclohexane catalytic oxidation. Progress in Natural Science, 2020, 30(1): 35–40

    Article  CAS  Google Scholar 

  12. Sun L, Liu J, Luo W, Yang Y, Wang F, Weerakkody C, Suib S L. Preparation of amorphous copper-chromium oxides catalysts for selective oxidation of cyclohexane. Molecular Catalysis, 2018, 460: 16–26

    Article  CAS  Google Scholar 

  13. Xie C, Wang W, Yang Y, Jiang L, Chen Y, He J, Wang J. Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. Molecular Catalysis, 2020, 495: 111134

    Article  CAS  Google Scholar 

  14. Muhumuza E, Wu P, Nan T, Zhao L, Bai P, Mintova S, Yan Z. Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane. Industrial & Engineering Chemistry Research, 2020, 59(49): 21322–21332

    Article  CAS  Google Scholar 

  15. Zhang Y, Yin Z, Hui H, Wang H, Li Y, Liu G, Kang J, Li Z, Mamba B B, Li J. Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. Journal of Catalysis, 2020, 387: 154–162

    Article  CAS  Google Scholar 

  16. Guimarães A S, Schmitberger B, Meireles A M, Martins D C da S, DeFreitas-Silva G. An eco-friendly approach to the cyclohexane oxidation catalyzed by manganese porphyrins: green and solvent-free systems. Polyhedron, 2019, 163: 144–152

    Article  Google Scholar 

  17. Huang X F, Yuan G P, Huang G, Wei S J. Study on maximizing catalytic performance of cobalt(II) 5,10,15,20-tetrakis(4-pyridyl) porphyrin for cyclohexane oxidation. Journal of Industrial and Engineering Chemistry, 2019, 77: 135–145

    Article  CAS  Google Scholar 

  18. Mo L Q, Huang X F, Huang G, Yuan G P, Wei S J. Highly active catalysis of cobalt tetrakis(pentafluorophenyl)porphyrin promoted by chitosan for cyclohexane oxidation in response-surface-methodology-optimized reaction conditions. ChemistryOpen, 2019, 8(1): 104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meireles A M, Martins D C S. Classical and green cyclohexane oxidation catalyzed by manganese porphyrins: ethanol as solvent and axial ligand. Polyhedron, 2020, 187: 114627

    Article  CAS  Google Scholar 

  20. Wang Z, Wu Y, Wu C, Xie J, Gu X, Yu P, Zong M, Gates I D, Liu H, Rong J. Electrophilic oxygen on defect-rich carbon nanotubes for selective oxidation of cyclohexane. Catalysis Science & Technology, 2020, 10(2): 332–336

    Article  CAS  Google Scholar 

  21. Guo Y, Ying T, Liu X, Shi B, Wang Y. A partially graphitic carbon catalyst for aerobic oxidation of cyclohexane. Molecular Catalysis, 2019, 479: 110487

    Article  Google Scholar 

  22. Tang S, Fu Z, Li Y, Li Y. Study on boron and fluorine-doped C3N4 as a solid activator for cyclohexane oxidation with H2O2 catalyzed by 8-quinolinolato iron(III) complexes under visible light irradiation. Applied Catalysis A: General, 2020, 590: 117342

    Article  CAS  Google Scholar 

  23. Shi D, Ming Z, Wu Q, Lai T, Zheng K, He C, Zhao J. A novel photosensitizing decatungstate-based MOF: synthesis and photocatalytic oxidation of cyclohexane with molecular oxygen. Inorganic Chemistry Communications, 2019, 100: 125–128

    Article  CAS  ADS  Google Scholar 

  24. Wang S, Sun Z, Zou X, Zhang Z, Fu G, Li L, Zhang X, Luo F. Enhancing catalytic aerobic oxidation performance of cyclohexane: via size regulation of mixed-valence {V16} cluster-based metal-organic frameworks. New Journal of Chemistry, 2019, 43(36): 14527–14535

    Article  CAS  Google Scholar 

  25. Wang H, Zhang Y, Zhang L, Guo Y, Liu S, Gao F, Han Y, Feng G, Liang X, Ge L. Synthesis of C-N dual-doped Cr2O3 visible light-driven photocatalysts derived from metalorganic framework (MOF) for cyclohexane oxidation. RSC Advances, 2016, 6(88): 84871–84881

    Article  CAS  ADS  Google Scholar 

  26. Fu Y, Zhan W, Guo Y, Guo Y, Wang Y, Lu G. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane. Green Energy Environment, 2017, 2(2): 142–150

    Article  Google Scholar 

  27. Xu C, Jin L, Wang X, Chen Y, Dai L. Honeycomb-like porous Ce-Cr oxide/N-doped carbon nanostructure: achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 2020, 160: 287–297

    Article  CAS  Google Scholar 

  28. Nie R, Chen J, Chen M, Qi Z, Goh T W, Ma T, Zhou L, Pei Y, Huang W. Aerobic oxidation of the C-H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21(6): 1461–1466

    Article  CAS  Google Scholar 

  29. Peng M, Liu P, Li Z, Li Z, Wen J, Yan C F, Zhang Q, Zeng X, Zou J. Construction of Co/N-doped porous rose-like structure for efficient oxygen reduction reaction catalyst and Zn-air battery. Applied Surface Science, 2021, 566: 150665

    Article  CAS  Google Scholar 

  30. Zhang F, Ji S, Wang H, Liang H, Wang X, Wang R. Implanting cobalt atom clusters within nitrogen-doped carbon network as highly stable cathode for lithium-sulfur batteries. Small Methods, 2021, 5(6): 2100066

    Article  CAS  Google Scholar 

  31. Zhang J, Su Y, Yu Q, Zhang H, Luo Z. Facile synthesis of N-doped Co/graphite C composites with melamine as carbon and nitrogen source with enhanced microwave absorption performance. Journal of Materials Science, 2021, 56(36): 19857–19869

    Article  CAS  ADS  Google Scholar 

  32. Zhao W, Li G, Tang Z. Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27: 178–197

    Article  CAS  Google Scholar 

  33. Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, Liu Z, Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49(10): 3142–3186

    Article  CAS  PubMed  Google Scholar 

  34. Wang C, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J, Yamauchi Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40

    Article  CAS  Google Scholar 

  35. Amiinu I S, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Advanced Functional Materials, 2018, 28(5): 1704638

    Article  Google Scholar 

  36. Zhou Q, Zhang Z, Cai J, Liu B, Zhang Y, Gong X, Sui X, Yu A, Zhao L, Wang Z, et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 2020, 71: 104592

    Article  CAS  Google Scholar 

  37. Meng H, Liu Y, Liu H, Pei S, Yuan X, Li H, Zhang Y. ZIF67@MFC-derived Co/N-C@CNFs interconnected frame-works with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions. ACS Applied Materials & Interfaces, 2020, 12(37): 41580–41589

    Article  CAS  Google Scholar 

  38. Li Z, Liu R, Tang C, Wang Z, Chen X, Jiang Y, Wang C, Yuan Y, Wang W, Wang D, et al. Cobalt nanoparticles and atomic sites in nitrogen-doped carbon frameworks for highly sensitive sensing of hydrogen peroxide. Small, 2020, 16(15): 1902860

    Article  CAS  Google Scholar 

  39. Liang J, Chen J, Shen H, Hu K, Zhao B, Kong J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chemistry of Materials, 2021, 33(5): 1789–1798

    Article  CAS  Google Scholar 

  40. Mahsud A, Chen J, Yuan X, Lyu F, Zhong Q, Chen J, Yin Y, Zhang Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14(8): 2819–2825

    Article  CAS  ADS  Google Scholar 

  41. Kaneti Y V, Dutta S, Hossain M S A, Shiddiky M J A, Tung K L, Shieh F K, Tsung C K, Wu K C W, Yamauchi Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213

    Article  Google Scholar 

  42. Yu Q, Guan D, Zhuang Z, Li J, Shi C, Luo W, Zhou L, Zhao D, Mai L. Mass production of monodisperse carbon microspheres with size-dependent supercapacitor performance via aqueous self-catalyzed polymerization. ChemPlusChem, 2017, 82(6): 872–878

    Article  CAS  PubMed  Google Scholar 

  43. Bin D S, Chi Z X, Li Y, Zhang K, Yang X, Sun Y G, Piao J Y, Cao A M, Wan L J. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. Journal of the American Chemical Society, 2017, 139(38): 13492–13498

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D, Lu G Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951

    Article  CAS  PubMed  Google Scholar 

  45. Shi C, Liu Y, Qi R, Li J, Zhu J, Yu R, Li S, Hong X, Wu J, Xi S, et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87: 106153

    Article  CAS  Google Scholar 

  46. Gao J, Ma N, Zheng Y, Zhang J, Gui J, Guo C, An H, Tan X, Yin Z, Ma D. Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem, 2017, 9(9): 1601–1609

    Article  CAS  Google Scholar 

  47. Wu M, Zhan W, Guo Y, Guo Y, Wang Y, Wang L, Lu G. An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523: 97–106

    Article  CAS  Google Scholar 

  48. Hermans I, Nguyen T L, Jacobs P A, Peeters J. Autoxidation of cyclohexane: conventional views challenged by theory and experiment. ChemPhysChem, 2005, 6(4): 637–645

    Article  CAS  PubMed  Google Scholar 

  49. Yuan E, Liu H, Tao Y, Xie J, Jian R, Jian P, Liu J. Density functional theory study of selective aerobic oxidation of cyclohexane: the roles of acetic acid and cobalt ion. Journal of Molecular Modeling, 2019, 25(3): 1–10

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 22178294), Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC1117), Project of Hunan Provincial Education Department (Grant No. 22A0125), Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ30663), Postgraduates Scientific Research Innovation Project of Xiangtan University (Grant No. QL20220146), Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization, and Environment-friendly Chemical Process Integration Technology Hunan Province Key laboratory. In addition, we would like to thank KetengEdit for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xiong or Fang Hao.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2024_2395_MOESM1_ESM.pdf

Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Sun, Y., Chi, J. et al. Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation. Front. Chem. Sci. Eng. 18, 33 (2024). https://doi.org/10.1007/s11705-024-2395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2395-3

Keywords

Navigation