Skip to main content
Log in

Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Heteroatom doping and defect engineering have been proposed as effective ways to modulate the energy band structure and improve the photocatalytic activity of g-C3N4. In this work, ultrathin defective g-C3N4 was successfully prepared using cold plasma. Plasma exfoliation reduces the thickness of g-C3N4 from 10 nm to 3 nm, while simultaneously introducing a large number of nitrogen defects and oxygen atoms into g-C3N4. The amount of doped O was regulated by varying the time and power of the plasma treatment. Due to N vacancies, O atoms formed strong bonds with C atoms, resulting in O doping in g-C3N4. The mechanism of plasma treatment involves oxygen etching and gas expansion. Photocatalytic experiments demonstrated that appropriate amount of O doping improved the photocatalytic degradation of rhodamine B compared with pure g-C3N4. The introduction of O optimized the energy band structure and photoelectric properties of g-C3N4. Active species trapping experiments revealed ·O2 as the main active species during the degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu C P, Anusuyadevi P R, Aymonier C, Luque R, Marre S. Nanostructured materials for photocatalysis. Chemical Society Reviews, 2019, 48(14): 3868–3902

    Article  PubMed  CAS  Google Scholar 

  2. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48(7): 2109–2125

    Article  PubMed  CAS  Google Scholar 

  3. Kou J H, Lu C H, Wang J, Chen Y K, Xu Z Z, Varma R S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chemical Reviews, 2017, 117(3): 1445–1514

    Article  PubMed  CAS  Google Scholar 

  4. Ajmal Z, Hayat A, Qasim M, Kumar A, El Jery A, Abbas W, Hussain M B, Qadeer A, Iqbal S, Bashir S, et al. Assembly of a novel Fe2TiO5-impregnated donor-n-acceptor conjugated carbon nitride for highly efficient solar water splitting. Sustainable Materials and Technologies, 2023, 36: e00594

    Article  CAS  Google Scholar 

  5. Xia P F, Cao S W, Zhu B C, Liu M J, Shi M S, Yu J G, Zhang Y F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angewandte Chemie International Edition, 2020, 59(13): 5218–5225

    Article  PubMed  CAS  Google Scholar 

  6. Nasir M S, Yang G R, Ayub I, Wang S, Wang L, Wang X J, Yan W, Peng S J, Ramakarishna S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257: 117855

    Article  CAS  Google Scholar 

  7. Dong G P, Zhang Y H, Pan Q W, Qiu J R. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2014, 20: 33–50

    Article  CAS  Google Scholar 

  8. Liu B Y, Du J Y, Ke G L, Jia B, Huang Y J, He H C, Zhou Y, Zou Z G. Boosting O2 reduction and H2O dehydrogenation kinetics: surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Advanced Functional Materials, 2022, 32(15): 2111125

    Article  CAS  Google Scholar 

  9. Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80

    Article  PubMed  CAS  Google Scholar 

  10. Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J, Fang B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy & Environmental Science, 2019, 12(7): 2080–2147

    Article  CAS  Google Scholar 

  11. Cao Q, Kumru B, Antonietti M, Schmidt B. Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Materials Horizons, 2020, 7(3): 762–786

    Article  CAS  Google Scholar 

  12. Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 2012, 51(1): 68–89

    Article  PubMed  CAS  Google Scholar 

  13. Zhu J J, Xiao P, Li H L, Carabineiro S A C. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 2014, 6(19): 16449–16465

    Article  CAS  Google Scholar 

  14. Wang J L, Wang S Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coordination Chemistry Reviews, 2022, 453: 214338

    Article  CAS  Google Scholar 

  15. Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P, Jonnalagadda S B, Thakur V K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 2019, 15: 494–524

    Article  Google Scholar 

  16. Jiang L B, Yuan X Z, Pan Y, Liang J, Zeng G M, Wu Z B, Wang H. Doping of graphitic carbon nitride for photocatalysis: a reveiw. Applied Catalysis B: Environmental, 2017, 217: 388–406

    Article  CAS  Google Scholar 

  17. Liu T, Zhu W, Wang N, Zhang K Y, Wen X, Xing Y, Li Y F. Preparation of structure vacancy defect modified diatomic-layered g-C3N4 nanosheet with enhanced photocatalytic performance. Advanced Science, 2023, 10(24): 2302503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu X Q, Kang W, Zeng W, Zhang Y X, Qi L, Ling F L, Fang L, Chen Q, Zhou M. Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: a first-principles hybrid functional investigation. Applied Surface Science, 2020, 499: 143994

    Article  CAS  Google Scholar 

  19. Bie C B, Cheng B, Fan J J, Ho W K, Yu J G. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3(2): 100051

    Article  CAS  Google Scholar 

  20. Ghosh U, Majumdar A, Pal A. Photocatalytic CO2 reduction over g-C3N4 based heterostructures: recent progress and prospects. Journal of Environmental Chemical Engineering, 2021, 9(1): 104631

    Article  CAS  Google Scholar 

  21. Cheng C, Mao L H, Kang X, Dong C L, Huang Y C, Shen S H, Shi J W, Guo L J. A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Applied Catalysis B: Environmental, 2023, 331: 122733

    Article  CAS  Google Scholar 

  22. Barrio J, Shalom M. Ultralong nanostructured carbon nitride wires and self-standing C-rich filters from supramolecular microspheres. ACS Applied Materials & Interfaces, 2018, 10(46): 39688–39694

    Article  CAS  Google Scholar 

  23. Chen Y, Ding F, Khaing A, Yang D, Jiang Z Y. Acetic acid-assisted supramolecular assembly synthesis of porous g-C3N4 hexagonal prism with excellent photocatalytic activity. Applied Surface Science, 2019, 479: 757–764

    Article  CAS  Google Scholar 

  24. Wu C Z, Xue S Y, Qin Z J, Nazari M, Yang G, Yue S, Tong T, Ghasemi H, Hernandez F C R, Xue S C, et al. Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 282: 119557

    Article  CAS  Google Scholar 

  25. Shen R C, Zhang L, Li N, Lou Z Z, Ma T Y, Zhang P, Li Y J, Li X. W–N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catalysis, 2022, 12(16): 9994–10003

    Article  CAS  Google Scholar 

  26. Zhang X Y, Yang G, Meng J Q, Qin L, Ren M, Pan Y, Yang Y X, Guo Y H. Acetamide- or aormamide-assisted in situ approach to carbon-rich or nitrogen-deficient graphitic carbon nitride for notably enhanced visible-light photocatalytic redox performance. Small, 2023, 19(24): 2208012

    Article  CAS  Google Scholar 

  27. Zhu D D, Zhou Q X. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Applied Catalysis B: Environmental, 2021, 281: 119474

    Article  CAS  Google Scholar 

  28. Sun S D, Li J, Cui J, Gou X F, Yang Q, Liang S H, Yang Z M, Zhang J M. Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5(7): 1721–1727

    Article  CAS  Google Scholar 

  29. Xia X, Xie C, Xu B G, Ji X S, Gao G G, Yang P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 2022, 105: 303–312

    Article  CAS  Google Scholar 

  30. Duan L Y, Li G Q, Zhang S T, Wang H Y, Zhao Y L, Zhang Y F. Preparation of S-doped g-C3N4 with C vacancies using the desulfurized waste liquid extracting salt and its application for NOx removal. Chemical Engineering Journal, 2021, 411: 128551

    Article  CAS  Google Scholar 

  31. Wu F, Ma Y L, Hu Y H. Near infrared light-driven photoelectrocatalytic water splitting over P-doped g-C3N4. ACS Applied Energy Materials, 2020, 3(11): 11223–11230

    Article  CAS  Google Scholar 

  32. Ding Y, Maitra S, Wang C H, Zheng R T, Zhang M Y, Barakat T, Roy S, Liu J, Li Y, Hasan T, et al. Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 70: 236–247

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Jang B W L, Liu C J. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110

    Article  CAS  Google Scholar 

  34. Huang B J, Tian F, Shen Y D, Zheng M R, Zhao Y S, Wu J, Liu Y, Pennycook S J, Thong J T L. Selective engineering of chalcogen defects in MoS2 by low-energy helium plasma. ACS Applied Materials & Interfaces, 2019, 11(27): 24404–24411

    Article  CAS  Google Scholar 

  35. Bharti B, Kumar S, Lee H N, Kumar R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, 2016, 6(1): 32355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Azcatl A, Qin X Y, Prakash A, Zhang C X, Cheng L X, Wang Q X, Lu N, Kim M J, Kim J, Cho K, et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443

    Article  PubMed  CAS  Google Scholar 

  37. Akada K, Obata S, Saiki K. Radio-frequency plasma assisted reduction and nitrogen doping of graphene oxide. Carbon, 2022, 189: 571–578

    Article  CAS  Google Scholar 

  38. Zhang J N, Ji L Y, Gong J B, Wang Z. Facile synthesis of multiphase cobalt-iron spinel with enriched oxygen vacancies as a bifunctional oxygen electrocatalyst. Physical Chemistry Chemical Physics, 2022, 24(22): 13839–13847

    Article  PubMed  CAS  Google Scholar 

  39. Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(44): 18924–18928

    CAS  Google Scholar 

  40. Zhang D, Guo Y L, Zhao Z K. Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 1–9

    Article  Google Scholar 

  41. Luo Z, Tian S S, Wang Z. Enhanced activity of Cu/ZnO/C catalysts prepared by cold plasma for CO2 hydrogenation to methanol. Industrial & Engineering Chemistry Research, 2020, 59(13): 5657–5663

    Article  CAS  Google Scholar 

  42. Zhang B, Peng X F, Wang Z. Noble metal-free TiO2-coated carbon nitride layers for enhanced visible light-driven photocatalysis. Nanomaterials, 2020, 10(4): 805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang J, Chen J W, Wan Y F, Liu H W, Chen W, Wang G, Wang R L. Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2020, 12(12): 13805–13812

    Article  CAS  Google Scholar 

  44. Chen J A, Fu X Y, Chen H, Wang Z. Simultaneous Gd2O3 clusters decoration and O-doping of g-C3N4 by solvothermal-polycondensation method for reinforced photocatalytic activity towards sulfamerazine. Journal of Hazardous Materials, 2021, 402: 123780

    Article  PubMed  CAS  Google Scholar 

  45. Wang X Y, Sang L B, Zhang L, Yang G, Guo Y H, Yang Y X. Controllable synthesis for carbon self-doping and structural defect co-modified g-C3N4: enhanced photocatalytic oxidation performance and the mechanism insight. Journal of Alloys and Compounds, 2023, 941: 168921

    Article  CAS  Google Scholar 

  46. Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced Materials, 2013, 25(17): 2452–2456

    Article  PubMed  CAS  Google Scholar 

  47. Yang X X, Sun J D, Sheng L N, Wang Z Y, Ye Y L, Zheng J Y, Fan M H, Zhang Y Z, Sun X L. Carbon dots cooperatively modulating photocatalytic performance and surface charge of O-doped g-C3N4 for efficient water disinfection. Journal of Colloid and Interface Science, 2023, 631: 25–34

    Article  PubMed  CAS  Google Scholar 

  48. Mohamed H S H, Wu L, Li C F, Hu Z Y, Liu J, Deng Z, Chen L H, Li Y, Su B L. In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage. ACS Applied Materials & Interfaces, 2019, 11(36): 32957–32968

    Article  CAS  Google Scholar 

  49. Zhu B C, Zhang L Y, Cheng B, Yu J G. First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Applied Catalysis B: Environmental, 2018, 224: 983–999

    Article  CAS  Google Scholar 

  50. Qaraah F A, Mahyoub S A, Hezam A, Drmosh Q A, Munyaneza J, Yu Q, Xiu G L. One step-polymerization for constructing 1D/2D oxygen doped g-C3N4 isotype heterojunctions with highly improved visible-light-driven photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9(6): 106587

    Article  CAS  Google Scholar 

  51. Zheng Y M, Liu Y Y, Guo X L, Chen Z T, Zhang W J, Wang Y X, Tang X, Zhang Y, Zhao Y H. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. Journal of Materials Science and Technology, 2020, 41: 117–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 22278316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Guo, J., Han, R. et al. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties. Front. Chem. Sci. Eng. 18, 15 (2024). https://doi.org/10.1007/s11705-023-2381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-023-2381-1

Keywords

Navigation