Skip to main content
Log in

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A novel alginate/poly(acrylic acid/acrylamide) double-network hydrogel composite with silver nanoparticles was successfully fabricated using the sol-gel method. The presence of carboxyl and amide groups in the network structure provided abundant active sites for complexing silver ions, facilitating the in situ reduction and confinement of silver nanoparticles. In batch experiments, the optimal silver loading was 20%, and 5 mmol·L−1 of p-nitrophenol was completely degraded in 113 s with a rate constant value of 4.057 × 10−2 s−1. In the tap water system and simulated seawater system, the degradation time of p-nitrophenol at the same concentration was 261 and 276 s, respectively, with a conversion rate above 99%. In the fixed-bed experiment, the conversion rate remained above 74% after 3 h at a flowing rate of 7 mL·min−1. After 8 cycling tests, the conversion rate remained at 98.7%. Moreover, the catalyst exhibited outstanding performance in the degradation experiment of four typical organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pandey S, Do J Y, Kim J, Kang M. Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. International Journal of Biological Macromolecules, 2020, 143: 60–75

    Article  CAS  PubMed  Google Scholar 

  2. Makhado E, Motshabi B R, Allouss D, Ramohlola K E, Modibane K D, Hato M J, Jugade R M, Shaik F, Pandey S. Development of a ghatti gum/poly (acrylic acid)/TiO2 hydrogel nanocomposite for malachite green adsorption from aqueous media: statistical optimization using response surface methodology. Chemosphere, 2022, 306: 135524

    Article  CAS  PubMed  Google Scholar 

  3. Pandey S, Son N, Kang M. Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile)@metal nanoparticle for organic pollutants. International Journal of Biological Macromolecules, 2022, 210: 300–314

    Article  CAS  PubMed  Google Scholar 

  4. Pandey S, Mishra S B. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydrate Polymers, 2014, 113: 525–531

    Article  CAS  PubMed  Google Scholar 

  5. Campos A, Troc N, Cottancin E, Pellarin M, Weissker H C, Lermé J, Kociak M, Hillenkamp M. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nature Physics, 2019, 15(3): 275–280

    Article  CAS  Google Scholar 

  6. Pandey S, Son N, Kim S, Balakrishnan D, Kang M. Locust bean gum-based hydrogels embedded magnetic iron oxide nanoparticles nanocomposite: advanced materials for environmental and energy applications. Environmental Research, 2022, 214(Part 3): 114000

    Article  CAS  PubMed  Google Scholar 

  7. Pourmadadi M, Eshaghi M M, Ostovar S, Shamsabadipour A, Safakhah S, Mousavi M S, Rahdar A, Pandey S. UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: a comprehensive review. Journal of Drug Delivery Science and Technology, 2022, 76: 103758

    Article  Google Scholar 

  8. Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-based hybrid nanoarchitectures for cancer therapy applications. Polymers, 2022, 14(15): 3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma A, Nagraik R, Sharma S, Sharma G, Pandey S, Azizov S, Chauhan P K, Kumar D. Green synthesis of ZnO nanoparticles using ficus palmata: antioxidant, antibacterial and antidiabetic studies. Results in Chemistry, 2022, 4: 100509

    Article  CAS  Google Scholar 

  10. Hassanisaadi M, Bonjar A H S, Rahdar A, Varma R S, Ajalli N, Pandey S. Eco-friendly biosynthesis of silver nanoparticles using aloysia citrodora leaf extract and evaluations of their bioactivities. Materials Today. Communications, 2022, 33: 104183

    Article  CAS  Google Scholar 

  11. Moriai T, Tsukamoto T, Tanabe M, Kambe T, Yamamoto K. Selective hydroperoxygenation of olefins realized by a coinage multimetallic 1-nanometer catalyst. Angewandte Chemie International Edition, 2020, 59(51): 23051–23055

    Article  CAS  PubMed  Google Scholar 

  12. Jia W, Tian F, Zhang M, Li X, Ye S, Ma Y, Wang W, Zhang Y, Meng C, Zeng G, Liu J. Nitrogen-doped porous carbon-encapsulated copper composite for efficient reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2021, 594: 254–264

    Article  CAS  PubMed  Google Scholar 

  13. Hussain I, Shahid M, Ali F, Irfan A, Begum R, Farooqi Z H. Polymer hydrogels for stabilization of inorganic nanoparticles and their application in catalysis for degradation of toxic chemicals. Environmental Technology, 2021, 42(1): 1–11

    Google Scholar 

  14. Farooqi Z H, Sultana H, Begum R, Usman M, Ajmal M, Nisar J, Irfan A, Azam M. Catalytic degradation of malachite green using a crosslinked colloidal polymeric system loaded with silver nanoparticles. International Journal of Environmental Analytical Chemistry, 2022, 102(16): 4104–4120

    Article  CAS  Google Scholar 

  15. Hussain I, Farooqi Z H, Ali F, Begum R, Irfan A, Wu W, Wang X, Shahid M, Nisar J. Poly(styrene@N-isopropylmethacrylamide-co-methacrylic acid)@Ag hybrid particles with excellent catalytic potential. Journal of Molecular Liquids, 2021, 335: 116106

    Article  CAS  Google Scholar 

  16. Shah L A, Haleem A, Sayed M, Siddiq M. Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. Journal of Environmental Chemical Engineering, 2016, 4(3): 3492–3497

    Article  CAS  Google Scholar 

  17. Wang L, Chen S, Zhou J, Yang J, Chen X, Ji Y, Liu X, Zha L. Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip-catalyst with temperature-tunable catalytic activity. Macromolecular Materials and Engineering, 2017, 302(10): 1700181

    Article  Google Scholar 

  18. Khan M, Shah L A, Khan M A, Khattak N S, Zhao H. Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Materials Science and Engineering C, 2020, 116: 111278

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Zhang Y, Zhang W, Dai Y, Xia F. Gold nanoparticles-deranged double network for janus adhesive-tough hydrogel as strain sensor. Chemical Engineering Journal, 2021, 420(Part 3): 130447

    Article  CAS  Google Scholar 

  20. Khan M, Shah L A, Rahman T U, Yoo H M, Ye D, Vacharasin J. Hydrophobically associated functionalized CNT-reinforced double-network hydrogels as advanced flexible strain sensors. ACS Applied Polymer Materials, 2022, 4(10): 7397–7407

    Article  CAS  Google Scholar 

  21. Subhan H, Alam S, Shah L A, Khattak N S, Zekker I. Sodium alginate grafted hydrogel for adsorption of methylene green and use of the waste as an adsorbent for the separation of emulsified oil. Journal of Water Process Engineering, 2022, 46: 102546

    Article  Google Scholar 

  22. Wu D, Yi M, Duan H, Xu J, Wang Q. Tough TiO2-rGO-PDMAA nanocomposite hydrogel via one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon, 2016, 108: 394–403

    Article  CAS  Google Scholar 

  23. He X, Gopinath K, Sathishkumar G, Guo L, Zhang K, Lu Z, Li C, Kang E T, Xu L. UV-assisted deposition of antibacterial Ag-tannic acid nanocomposite coating. ACS Applied Materials & Interfaces, 2021, 13(17): 20708–20717

    Article  CAS  Google Scholar 

  24. Gao C, An Q, Xiao Z, Zhai S, Zhai B, Shi Z. Alginate and polyethyleneimine dually mediated synthesis of nanosilver-containing composites for efficient p-nitrophenol reduction. Carbohydrate Polymers, 2018, 181: 744–751

    Article  CAS  PubMed  Google Scholar 

  25. Makhado E, Pandey S, Modibane K D, Kang M, Hato M J. Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. International Journal of Biological Macromolecules, 2020, 162: 60–73

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Peng X, Guo S, Sun M, Cheng J, Zou L, Chi B, Pu J. Ultraviolet light-assisted Ag@La0.6Sr0.4Fe0.9Mn0.1O3 nanohybrids: a facile and versatile method for preparation of highly stable catalysts in Li-O2 batteries. ACS Applied Energy Materials, 2021, 4(9): 9376–9383

    Article  CAS  Google Scholar 

  27. Zhang Z, Hu J, Wang Y, Shi R, Ma Y, Huang H, Wang H, Wei J, Yu Q. Relationship between microstructure of AgCl film and electrochemical behavior of Ag|AgCl electrode for chloride detection. Corrosion Science, 2021s, 184: 109393

    Article  CAS  Google Scholar 

  28. Nguyen T T N, Lee M S. Purification of the sodium hydroxide leaching solution of black dross by removal of silicate(IV) with polyacrylamide (PAM). Mineral Processing and Extractive Metallurgy Review, 2021, 42(1): 9–16

    Article  CAS  Google Scholar 

  29. Ryu J H, Han N K, Lee J S, Jeong Y G. Microstructure, thermal and mechanical properties of composite films based on carboxymethylated nanocellulose and polyacrylamide. Carbohydrate Polymers, 2019, 211: 84–90

    Article  CAS  PubMed  Google Scholar 

  30. Xu S, Liang W, Xu G, Huang C, Zhang J, Lang M. A fast and dual crosslinking hydrogel based on vinyl ether sodium alginate. Applied Surface Science, 2020, 515: 145811

    Article  CAS  Google Scholar 

  31. Das R, Sypu V S, Paumo H K, Bhaumik M, Maharaj V, Maity A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Applied Catalysis B: Environmental, 2019, 244: 546–558

    Article  CAS  Google Scholar 

  32. Dong G, Cao Y, Zheng S, Zhou J, Li W, Zaera F, Zhou X. Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate. Journal of Catalysis, 2020, 391: 155–162

    Article  CAS  Google Scholar 

  33. e T, Ma D, Yang S, Hao X O, Ma D, Yang S, Hao X. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. Journal of Alloys and Compounds, 2020, 832: 154833

    Article  Google Scholar 

  34. Gao C, Xiao L, Zhou J, Wang H, Zhai S, An Q. Immobilization of nanosilver onto glycine modified lignin hydrogel composites for highly efficient p-nitrophenol hydrogenation. Chemical Engineering Journal, 2021, 403: 126370

    Article  CAS  Google Scholar 

  35. Shah L A. Developing Ag-tercopolymer microgels for the catalytic reduction of p-nitrophenol and Eosin Y throughout the entire pH range. Journal of Molecular Liquids, 2019, 288: 111045

    Article  Google Scholar 

  36. Yan Q, Wang X Y, Feng J J, Mei L P, Wang A J. Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: a highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. Journal of Colloid and Interface Science, 2021, 582(Part B): 701–710

    Article  CAS  PubMed  Google Scholar 

  37. Khalil A, Ali N, Asiri A M, Kamal T, Khan S B, Ali J. Synthesis and catalytic evaluation of silver@nickel oxide and alginate biopolymer nanocomposite hydrogel beads. Cellulose, 2021, 28(18): 11299–11313

    Article  CAS  Google Scholar 

  38. Khan Z, Bashir O, Khan M N, Khan T A, Al-Thabaiti S A. Cationic surfactant assisted morphology of Ag@Cu, and their catalytic reductive degradation of rhodamine B. Journal of Molecular Liquids, 2017, 248: 1096–1108

    Article  CAS  Google Scholar 

  39. Subhan F, Aslam S, Yan Z, Yaseen M, Zada A, Ikram M. Fabrication of highly dispersed Pt NPs in nanoconfined spaces of as-made KIT-6 for nitrophenol and MB catalytic reduction in water. Separation and Purification Technology, 2021, 265: 118532

    Article  CAS  Google Scholar 

  40. Yu Y, Liu S, Pei Y, Luo X. Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. International Journal of Biological Macromolecules, 2021, 166: 1419–1428

    Article  CAS  PubMed  Google Scholar 

  41. Lajevardi A, Tavakkoli Yaraki M, Masjedi A, Nouri A, Hossaini Sadr M. Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. Journal of Molecular Liquids, 2019, 276: 371–378

    Article  CAS  Google Scholar 

  42. Akilandaeaswari B, Muthu K. One-pot green synthesis of Au-Ag bimetallic nanoparticles from lawsonia inermis seed extract and its catalytic reduction of environmental polluted methyl orange and 4-nitrophenol. Journal of the Taiwan Institute of Chemical Engineers, 2021, 127: 292–301

    Article  CAS  Google Scholar 

  43. Khan S B, Khan M S J, Kamal T, Asiri A M, Bakhsh E M. Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants. Cellulose, 2020, 27(10): 5907–5921

    Article  CAS  Google Scholar 

  44. Malik A, Nath M. Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microcrystals: a heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. Journal of Environmental Chemical Engineering, 2020, 8(6): 104547

    Article  CAS  Google Scholar 

  45. Malik M A, Alshehri A A, Patel R. Facile one-pot green synthesis of Ag-Fe bimetallic nanoparticles and their catalytic capability for 4-nitrophenol reduction. Journal of Materials Research and Technology, 2021, 12: 455–470

    Article  CAS  Google Scholar 

  46. Li X, Zeng C, Jiang J, Ai L. Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(19): 7476–7482

    Article  CAS  Google Scholar 

  47. Rezaei F, Dinari M. Cu nanoparticles embedded in the porous organic polymer as highly effective catalysts for nitroaromatics reduction. Microporous and Mesoporous Materials, 2021, 325: 111339

    Article  CAS  Google Scholar 

  48. Xu Y, Shi X, Hua R, Zhang R, Yao Y, Zhao B, Liu T, Zheng J, Lu G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Applied Catalysis B: Environmental, 2020, 260: 118142

    Article  CAS  Google Scholar 

  49. Yu H, Oh S, Han Y, Lee S, Jeong H S, Hong H J. Modified cellulose nanofibril aerogel: tunable catalyst support for treatment of 4-nitrophenol from wastewater. Chemosphere, 2021, 285: 131448

    Article  CAS  PubMed  Google Scholar 

  50. Peng C, Kuai Z, Li X, Lian S, Jiang D, Tang J, Li L, Wu R, Wu A, Chen S. Facile synthesis of Ag nanoparticles/Ti3C2Tx/polyacry-lamide composite hydrogel as efficient catalyst for methylene blue and 4-nitrophenol reduction. Materials & Design, 2021, 210: 110061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 21776026, 22075034, and 22178037), and Liaoning Revitalization Talents Program (Grant Nos. XLYC1902037 and XLYC2002114), and Natural Science Foundation of Liaoning Province of China (Grant No. 2021-MS-303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ce Gao or Qing-Da An.

Electronic Supplementary Material

11705_2022_2290_MOESM1_ESM.pdf

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Gao, C., Zhai, SR. et al. Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes. Front. Chem. Sci. Eng. 17, 893–905 (2023). https://doi.org/10.1007/s11705-022-2290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2290-8

Keywords

Navigation