Skip to main content
Log in

Research progress on low dielectric constant modification of cellulose insulating paper for power transformers

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Because of the increase in the transmission voltage levels, the demand for insulation reliability of power transformers has increasingly become critical. Cellulose insulating paper is the main insulating component of power transformers. To improve the insulation level of ultrahigh voltage transformers and reduce their weight and size, reducing the dielectric constant of oil-immersed cellulose insulating paper is highly desired. Cellulose is used to produce power-transformer insulating papers owing to its excellent electrical properties, renewability, biodegradability and abundance. The dielectric constant of a cellulose insulating paper can be effectively reduced by chemical or physical modification. This study presents an overview of the foreign and domestic research status of the use of modification technology to reduce the dielectric constant of cellulose insulating papers. All the mentioned methods are analyzed in this study. Finally, some recommendations for future modified cellulose insulating paper research and applications are proposed. This paper can provide a reference for further research on low dielectric constant cellulose insulating paper in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padmanaban S, Khalili M, Nasab M A, Zand M, Shamim A G, Khan B. Determination of power transformers health index using parameters affecting the transformer’s life. Journal of the Institution of Electronics and Telecommunication Engineers, 2022, in press

  2. Feng D W, Hao J, Yang L J, Liao R J, Chen X, Li J. Comparison of AC breakdown characteristics on insulation paper (pressboard) immersed by three-element mixed insulation oil and mineral oil. High Voltage, 2020, 5(3): 298–305

    Article  Google Scholar 

  3. Geng C H, Liu J F, Zhang H, Liu C Y, Luo Y W, Zhang Y. Diffusion mechanism of furfural in transformer oil-paper insulation under moisture effect. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(2): 485–492

    Article  CAS  Google Scholar 

  4. Zhang E Z, Zheng H B, Zhang C S, Wang J Q, Shi K K, Guo J, Schwarz H, Zhang C H. Aging state assessment of transformer cellulosic paper insulation using multivariate chemical indicators. Cellulose, 2021, 28(4): 2445–2460

    Article  CAS  Google Scholar 

  5. Thirumurugan C, Kumbhar G B, Oruganti R. Surface discharge characteristics of different solid-liquid insulation materials in power transformers. IEEE Transactions on Plasma Science, 2019, 47(11): 5013–5022

    Article  CAS  Google Scholar 

  6. Hou W, Yang L J, Yang M, Yin F, Huang Y Y, Zheng X L. Static dielectric constant and dielectric loss of cellulose insulation: molecular dynamics simulations. High Voltage, 2021, 6(6): 1051–1060

    Article  Google Scholar 

  7. Tang C, Zhang S, Wang X B, Hao J. Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose, 2018, 25(6): 3619–3633

    Article  CAS  Google Scholar 

  8. Rafiq M, Lv Y Z, Li C R. A review on properties, opportunities, and challenges of transformer oil-based nanofluids. Journal of Nanomaterials, 2016, 2016: 8371560

    Article  Google Scholar 

  9. Liu Y X, Song B, Wang L N, Gao J C, Xu R H. Power transformer fault diagnosis based on dissolved gas analysis by correlation coefficient-DBSCAN. Applied Sciences, 2020, 10(13): 4440

    Article  CAS  Google Scholar 

  10. Abenojar J, Enciso B, Pantoja M, Velasco F, Martinez M A. Thermal characterization and diffusivity of two monocomponent epoxies for transformer insulation. International Journal of Adhesion and Adhesives, 2020, 103: 102726

    Article  CAS  Google Scholar 

  11. Rafiq M, Shafique M, Azam A, Ateeq M. The impacts of nanotechnology on the improvement of liquid insulation of transformers: emerging trends and challenges. Journal of Molecular Liquids, 2020, 302: 112482

    Article  CAS  Google Scholar 

  12. Christina A J, Salam M A, Rahman Q M, Wen F S, Ang S P, Voon W. Causes of transformer failures and diagnostic methods—a review. Renewable & Sustainable Energy Reviews, 2018, 82(1): 1442–1456

    Google Scholar 

  13. Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S. A review on the research progress and future development of nano-modified cellulose insulation paper. IET Nanodielectrics, 2021, 5(2): 63–84

    Article  Google Scholar 

  14. Abd-Elhady A M, Abdul-Aleem A A, Izzularab M A. Electrical properties evaluation of double-layer nano-filled oil-paper composites. IET Science, Measurement & Technology, 2020, 15(1): 77–84

    Article  Google Scholar 

  15. Badawi M, Ibrahim S A, Mansour D E A, El-Faraskoury A A, Ward S A, Mahmoud K, Lehtonen M, Darwish M M F. Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. IEEE Access: Practical Innovations, Open Solutions, 2022, 10: 25954–25972

    Article  Google Scholar 

  16. Alshehawy A M, Mansour D E A, Ghali M, Lehtonen M, Darwish M M F. Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil. Processes, 2021, 9(5): 732

    Article  Google Scholar 

  17. Ghoneim S S M, Dessouky S S, Boubakeur A, Elfaraskoury A A, Abou Sharaf A B, Mahmoud K, Lehtonen M, Darwish M M F. Accurate insulating oil breakdown voltage model associated with different barrier effects. Processes, 2021, 9(4): 657

    Article  CAS  Google Scholar 

  18. Ward S A, El-Faraskoury A, Badawi M, Ibrahim S A, Mahmoud K, Lehtonen M, Darwish M M F. Towards precise interpretation of oil transformers via novel combined techniques based on DGA and partial discharge sensors. Sensors, 2021, 21(6): 2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansour D E A, Abdel-Gawad N M K, El Dein A Z, Ahmed H M, Darwish M M F, Lehtonen M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials, 2021, 14(1): 66

    Article  CAS  Google Scholar 

  20. Zheng H B, Yang E C, Wu S Y, Lv W J, Yang H, Li X F, Luo X Q, Hu W. Investigation on formation mechanisms of carbon oxides during thermal aging of cellulosic insulating paper. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1226–1233

    Article  CAS  Google Scholar 

  21. Mao J L, Wang S, Shi Q Y, Cheng Y L, Chen Y. Excellent vacuum pulsed flashover characteristics achieved in dielectric insulators functionalized by electronegative halogen-phenyl and naphthyl groups. Langmuir, 2022, 38(13): 4129–4137

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Yang F H, Sun X P, Li W F, Yao Z H. Effects of modified hexagonal boron nitride on electrical insulation properties of LLDPE/EAA nanocomposites. Polymer International, 2022, 71(8): 950–958

    Article  CAS  Google Scholar 

  23. Kabir M M, Wang H, Lau K T, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering, 2012, 43(7): 2883–2892

    Article  CAS  Google Scholar 

  24. Peng L, Fu Q, Li L, Lin M. Indirect detection of DP for insulating paper based on methanol content in transformer oil by spectroscopic approach. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 90–94

    Article  CAS  Google Scholar 

  25. Pablo A D, Pahlavanpour B. Furanic compounds analysis: a tool for predictive maintenance of oil filled electrical equipment. Electra, 1997, 175(32): 9–31

    Google Scholar 

  26. Huang J W, Zhou Y X, Dong L Y, Zhou Z L, Liu R. Enhancement of mechanical and electrical performances of insulating press paper by introduction of nanocellulose. Composites Science and Technology, 2017, 138: 40–48

    Article  CAS  Google Scholar 

  27. Sima W X, He J H, Sun P T, Yang M, Yin Z, Li C. Novel nanostructure composite dielectric with high insulation performance: silica-based nanometer-sized porous composite insulating paper reinforced by ceramic fibers. Scripta Materialia, 2020, 181: 58–61

    Article  CAS  Google Scholar 

  28. Chen J Q, Sun P T, Sima W X, Shao Q Q, Ye L, Li C. A promising nano-insulating-oil for industrial application: electrical properties and modification mechanism. Nanomaterials, 2019, 9(5): 788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J W, Tang C, Qiu Q P, Yang L. Effect of water on the diffusion of small molecular weight acids in nano-SiO2 modified insulating oil. Journal of Molecular Liquids, 2020, 314: 113670

    Article  CAS  Google Scholar 

  30. Sharin A G, Nor A M, Zulkarnain A N, Hidayat Z, Norazhar A B, Mohd A T. Methods for improving the workability of natural ester insulating oils in power transformer applications: a review. Electric Power Systems Research, 2018, 163: 655–667

    Article  Google Scholar 

  31. Kamata Y, Ohe E, Endoh K, Furukawa S, Tsukioka H, Maejima M, Fujita H, Nozaki M, Ishizuka F, Hyohdoh K. Development of low-permittivity pressboard and its evaluation for insulation of oil-immersed EHV power transformers. IEEE Transactions on Electrical Insulation, 1991, 26(4): 819–825

    Article  CAS  Google Scholar 

  32. Cao Y, Lrwin P C, Younsi K. The future of nano dielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797–807

    Article  Google Scholar 

  33. Tang C, Li X, Yin F, Hao J. The performance improvement of aramid insulation paper by nano-SiO2 modification. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2400–2409

    Article  CAS  Google Scholar 

  34. Hou W, Yang L J, Yin F, Mo Y, Liao R J, Yuan Y. Preparation of a novel cellulose insulation with network structure by citric acid crosslinking. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1171–1180

    Article  CAS  Google Scholar 

  35. Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Advanced Functional Materials, 2007, 17(14): 2405–2410

    Article  CAS  Google Scholar 

  36. Nie S X, Cai C C, Lin X J, Zhang C Y, Lu Y X, Mo J L, Wang S F. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18678–18685

    Article  CAS  Google Scholar 

  37. Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X. Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials, 2020, 30(50): 2004714

    Article  CAS  Google Scholar 

  38. Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy, 2021, 89: 106369

    Article  CAS  Google Scholar 

  39. Zhang S, Chi M C, Mo J L, Liu T, Liu Y H, Fu Q, Wang J L, Luo B, Qin Y, Wang S F, Nie S X. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nature Communications, 2022, 13(1): 4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge W J, Shuai J B, Wang Y Y, Zhou Y X, Wang X H. Progress on chemical modification of cellulose in “green” solvents. Polymer Chemistry, 2022, 13(3): 359–372

    Article  CAS  Google Scholar 

  41. Jennie B, Saina K, Danila M C, Martin L, Jakob W, Gunnar H, Mikael E L, Lars W, Francisco V. Acetylation and sugar composition influence the (in) solubility of plant β-mannans and their interaction with cellulose surfaces. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10027–10040

    Article  Google Scholar 

  42. Amaury L, Richard D, Balázs T, Daniel M, Rachida Z. Alkylation of microfibrillated cellulose—a green and efficient method for use in fiber-reinforced composites. Polymer, 2017, 126: 48–55

    Article  Google Scholar 

  43. Melissa B A, Fumiaki N, Hiroyuki Y. Improving the thermal stability of wood-based cellulose by esterification. Carbohydrate Polymers, 2018, 192: 28–36

    Article  Google Scholar 

  44. Li X L. Surface Charge Accumulation and breakdown mechanism of oil-impregnated paper in valve side bushing of UHV converter transformer. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2017: 39–99

    Google Scholar 

  45. Mo Y, Yang L J, Hou W, Zou T T, Huang Y Y, Zheng X L, Liao R J. Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Cellulose, 2019, 26(12): 7451–7468

    Article  CAS  Google Scholar 

  46. Mo Y, Yang L J, Hou W, Zou T T, Huang Y Y, Liao R J. Preparation of cellulose insulating paper with low dielectric constant by BTCA esterification crosslinking. Macromolecular Materials and Engineering, 2020, 305(6): 2000063

    Article  CAS  Google Scholar 

  47. Prevost T A. Thermally upgraded insulation in transformers. In: IEEE Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo. New York: IEEE, 2005: 120–125

    Google Scholar 

  48. Beavers M F, Raab E L, Raab L, Lesile J C. Permalex, a new insulation system. Power Apparatus and Systems Part III: Transactions of the American Institute of Electrical Engineers, 1960, 79(3): 64–70

    Google Scholar 

  49. Prevost T A, Oommen T V. Cellulose insulation in oil-filled power transformers: part I—history and development. IEEE Electrical Insulation Magazine, 2006, 22(1): 28–35

    Article  Google Scholar 

  50. Morrison E L. Evaluation of the thermal stability of electrical insulating paper. IEEE Transactions on Electrical Insulation, 1968, EI-3(3): 76–82

    Article  Google Scholar 

  51. Kilzer F J, Broido A. Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 1965, 2: 151–163

    CAS  Google Scholar 

  52. Raftopoulos K N, Pielichowski K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–187

    Article  CAS  Google Scholar 

  53. Ramesh S, Kim J, Kim J H. Characteristic of hybrid cellulose-amino functionalized POSS-silica nanocomposite and antimicrobial activity. Journal of Nanomaterials, 2015, 70: 1–9

    Article  Google Scholar 

  54. Song Z, Tang C, Xie J Y, Zhou Q. Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting. Applied Physics Letters, 2016, 109(17): 172902

    Article  Google Scholar 

  55. Barreto A C H, Costa M M, Sombra A S B, Rosa D S, Nascimento R F, Mazzetto S E, Fechine P B A. Chemically modified banana fiber: structure, dielectrical properties and biodegradability. Journal of Polymers and the Environment, 2010, 18(4): 523–531

    Article  CAS  Google Scholar 

  56. Einfeldt J, Meiner D, Kwasniewski A. Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Progress in Polymer Science, 2001, 26(9): 1419–1472

    Article  CAS  Google Scholar 

  57. Hu J, Zhang S F, Tang B T. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Materials, 2021, 34: 260–281

    Article  Google Scholar 

  58. Jang M, Park S Y, Kim S K, Jung D, Song W, Myung S, Lee S S, Yoon D H, An K S. Strategic customization of polymeric nanocomposites modified by 2D titanium oxide nanosheet for high-k and flexible gate dielectrics. Small, 2021, 17(17): 2007213

    Article  CAS  Google Scholar 

  59. Cai J M, Pan J L, Li X P, Tan J W, Li J B. Electrical resistivity of fly ash and metakaolin based geopolymers. Construction & Building Materials, 2020, 234: 117868

    Article  CAS  Google Scholar 

  60. Cai C C, Luo B, Liu Y H, Fu Q, Liu T, Wang S F, Nie S X. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326

    Article  CAS  Google Scholar 

  61. Cheng S, Zhou Y, Li Y S, Yuan C, Fu J, Hu J, He J L, Li Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Materials, 2021, 42: 445–453

    Article  Google Scholar 

  62. Shen Y, Zhang X, Li M, Lin Y H, Nan C W. Polymer nanocomposite dielectrics for electrical energy storage. National Science Review, 2017, 4(1): 23–25

    Article  CAS  Google Scholar 

  63. Zhao J M, Zhang W L, Liu T, Liu Y H, Qin Y, Mo J L, Cai C C, Zhang S, Nie S X. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664

    Article  CAS  Google Scholar 

  64. Cai C C, Mo J L, Lu Y X, Zhang N, Wu Z Y, Wang S F, Nie S X. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 2021, 83: 105833

    Article  CAS  Google Scholar 

  65. Zhang C Y, Mo J L, Fu Q, Liu Y H, Wang S F, Nie S X. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81: 105637

    Article  CAS  Google Scholar 

  66. Ji S Y, Jung H B, Kim M K, Lim J Y, Ryu J, Jeong D Y. Enhanced energy storage performance of polymer/ceramic/metal composites by increase of thermal conductivity and coulomb-blockade effect. ACS Applied Materials & Interfaces, 2021, 13(23): 27343–27352

    Article  CAS  Google Scholar 

  67. Feng Q K, Dong Q, Zhang D L, Pei J Y, Dang Z M. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Composites Science and Technology, 2022, 218: 109193

    Article  CAS  Google Scholar 

  68. Lu Y X, Tao P, Zhang N, Nie S X. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicellulose contents. Carbohydrate Polymers, 2020, 245: 116463

    Article  CAS  PubMed  Google Scholar 

  69. Kwon N K, Kim H, Han I K, Shin T J, Lee H W, Park J, Kim S Y. Enhanced mechanical properties of polymer nanocomposites using dopamine-modified polymers at nanoparticle surfaces in very low molecular weight polymers. ACS Macro Letters, 2018, 7(8): 962–967

    Article  CAS  PubMed  Google Scholar 

  70. Fereidoon A, Aleaghaee S, Taraghi I. Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Computational Materials Science, 2015, 102: 220–227

    Article  CAS  Google Scholar 

  71. Qin Y, Mo Ji L, Liu Y H, Zhang S, Wang J L, Fu Q, Wang S F, Nie S X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Advanced Functional Materials, 2022, 32(27): 2201846

    Article  CAS  Google Scholar 

  72. Chen Q G, Yang H D, Wang X Y, Liu H Q, Zhou K, Ning X. Dielectric properties of epoxy resin impregnated nano-SiO2 modified insulating paper. Polymers, 2019, 11(3): 393

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tanaka T, Montanari G C, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future application. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784

    Article  CAS  Google Scholar 

  74. Mo Y, Yang L Y, Zou T T, Hou W, Liao R J. Preparation of composite insulating paper with decreased permittivity, good mechanical and thermal properties by Kevlar/nano cellulose fibrils/softwood pulp hybrid. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 104258–104268

    Article  Google Scholar 

  75. Chen Q G, Liu H Q, Zhuge X L, Wei X L. Analysis of dielectric properties and electric field homogenization of modified insulation pressboard based on nano SiC. Electric Machines and Control, 2014, 18(12): 79–84+94

    Google Scholar 

  76. Yan S Q, Liao R J, Lv Y D, Zhao X T, Yuan Y, He L H. Influence of nano-Al2O3 on electrical properties of insulation paper under thermal aging. Transactions of China Electrotechnical Society, 2017, 32(11): 225–232

    Google Scholar 

  77. Liao R J, Lv C, Wu W Q, Liang N C, Yang L J. Insulating properties of insulation paper modified by nano-Al2O3 for power transformer. Journal of Electric Power Science and Technology, 2014, 29(01): 3–7

    Google Scholar 

  78. Liao R J, Lv C, Wu W Q, Liu T, Liu H B. Insulating property of insulation paper modified by nano-TiO2. High Voltage Engineering, 2014, 40(07): 1932–1939

    CAS  Google Scholar 

  79. Liao R J, Lv C, Yang L J, Zhang Y Y, Wu W Q, Tang C. The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2. Journal of Nanomaterials, 2013, 7: 373959

    Google Scholar 

  80. Zhang F Z, Liao R J, Yuan Y, Li Y S, Peng Q J, Liu T. Preparation for low-permittivity insulation paper and its breakdown performance. High Voltage Engineering, 2012, 38(03): 691–696

    CAS  Google Scholar 

  81. Yuan Y, Liao R J. A novel nanomodified cellulose insulation paper for power transformer. Journal of Nanomaterials, 2014, 2014: 510864

    Article  Google Scholar 

  82. Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 2010, 110(6): 3479–3500

    Article  CAS  PubMed  Google Scholar 

  83. Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994

    Article  CAS  PubMed  Google Scholar 

  84. Sehaqui H, Allais M, Zhou Q, Berglund L A. Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71(3): 382–387

    Article  CAS  Google Scholar 

  85. Huang X, Zhou Y X, Gesang Q Z, Zhang L, Zhang Y X, Teng C Y, Huang M. Construction of nanocellulose sandwich-structured insulating paper and its enhancement for mechanical and electrical properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1127–1135

    Article  CAS  Google Scholar 

  86. Yuan Y, Lin B P, Sun Y M. Novel low-dielec tric-constant copolyimide thin fims composed with SiO2 hollowspheres. Journal of Applied Polymer Science, 2010, 120(2): 1133–1137

    Article  Google Scholar 

  87. Bongicivanni R, Mazza D, Ronchetti S, Turcato E A. The influence of water on the intercalation of epoxy monomers in Na-montmorillonite. Journal of Colloid and Interface Science, 2006, 296(2): 515–519

    Article  Google Scholar 

  88. Dong Y, Bhattacharyya D. Dual role of maleated polypropylene in processing and material characterization of polypropylene/clay nanocomposites. Materials Science and Engineering A, 2010, 527(6): 1617–1622

    Article  Google Scholar 

  89. Zhang Q, Wang K, Men Y, Fu Q. Dispersion and tensile behavior of polypropylene/montmorillonite nanocomposites produced via melt intercalation. Chinese Journal of Polymer Science, 2003, 21(3): 359–367

    CAS  Google Scholar 

  90. Yin H J, Gao G Q, Yang Y, Liu K, Wu G N. A ReaxFF molecular dynamics study of insulation paper modification by plasma ROS. Physics of Plasmas, 2022, 29(3): 033508

    Article  CAS  Google Scholar 

  91. Liu C, Hao J, Li Y Q, Liao R J. Fabrication of ZnO−Al2O3−PTFE multilayer nano-structured functional film on cellulose insulation polymer surface and its effect on moisture inhibition and dielectric properties. Polymers, 2019, 11(8): 1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu S L, Zhang C, Zhang C S, Yu W X, Yang Q, Shao T. Nano-sized composite improving the insulating performance of insulating paper using low-temperature plasmas. Nanotechnology, 2021, 32(18): 185704

    Article  CAS  PubMed  Google Scholar 

  93. Chen Q J, Kang M C, Xie Q H, Wang J H. Effect of melamine modified cellulose nanocrystals on the performance of oil-immersed transformer insulation paper. Cellulose, 2020, 27(13): 7621–7636

    Article  CAS  Google Scholar 

  94. Tu Y P, He J, Wang Q, Liu M, Xu G L, Ding L J. Measurement of thermally stimulated current in ZnO varistor. Proceedings of the CSEE, 2010, 30(33): 116–121 (in Chinese)

    Google Scholar 

  95. Yang H D, Chen Q G, Wang X Y, Chi M H, Liu H Q, Ning X. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers, 2019, 11(8): 1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rafiq M, Li C R, Lv Y Z. Effect of Al2O3 nanorods on dielectric strength of aged transformer oil/paper insulation system. Journal of Molecular Liquids, 2019, 284: 700–708

    Article  CAS  Google Scholar 

  97. Cheng L, Jiang Y F, Dan M L, Wen H, Li Y Q, Qin W, Hao J. Effects of fiber and copper particles on conductivity and breakdown characteristics of natural ester and mineral oil under DC voltage. Energies, 2020, 13(7): 1818

    Article  CAS  Google Scholar 

  98. Liu H Z, Zhang G F, Lu L L, Chen Y X, Luo M T, Bian J M, Wang Z F, Wang L J. Influence of varied fluorine contents on long-term storage stability of polyacrylate nanoparticles and film properties. Journal of Nanomaterials, 2019, 2019: 2970819

    Article  Google Scholar 

  99. Xu L, Liang H W, Yang Y, Yu S H. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chemical Reviews, 2018, 118(7): 3209–3250

    Article  CAS  PubMed  Google Scholar 

  100. Liu J, Fan X, Zheng H, Zhang Y, Zhang C, Lai B, Wang J, Ren G, Zhang E. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose, 2019, 26(6): 3891–3908

    Article  CAS  Google Scholar 

  101. Yang M, Yang L J, Yin F, Gao Y Y, Liao R J. Polarity, thermal stability, and hydrophilicity of three-layer crosslinked PPTA/cellulose composite insulation system: molecular dynamics simulations. Materials Today Communications, 2022, 31:103533

    Article  Google Scholar 

  102. Wei S K, Wu X L, Li X. Solubility analysis of nano particles, cellulose crystalline region and cellulose molecule, and the impact study of crystalline region on properties of cellulose insulating paper. Molecular Simulation, 2021, 47(18): 1522–1529

    Article  CAS  Google Scholar 

  103. Kong Y, Li L B, Fu S Y. Insights from molecular dynamics simulations for interaction between cellulose microfibrils and hemicellulose. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(27): 14451–14459

    Article  CAS  Google Scholar 

  104. Du D Y, Tang C, Tang Y J, Yang L, Hao J. Molecular simulation on the mechanical and thermal properties of carbon nanowire modified cellulose insulating paper. Composite Structures, 2021, 261: 113283

    Article  CAS  Google Scholar 

  105. Zhang Z X, Zhou H B, Li W T, Tang C. Molecular simulation of improved mechanical properties and thermal stability of insulation paper cellulose by modification with silane-coupling-agent-grafted nano-SiO2. Processes, 2021, 9(5): 766

    Article  CAS  Google Scholar 

  106. Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y. Microscopic reaction mechanism of the production of methanol during the thermal aging of cellulosic insulating paper. Cellulose, 2020, 27(5): 2455–2467

    Article  CAS  Google Scholar 

  107. Yang M, Yang L J, Yin F, Gao Y Y, Liao R J. Development of PPTA/cellulose three-layer composite insulating paper with low dielectric constant and good mechanical strength based on molecular dynamics simulation. Polymer Composites, 2022, 43(3): 1698–1710

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51977114 and 51867003), Bagui Young Scholars Program (Grant No. 2019AQ16), and China Postdoctoral Science Foundation (2022MD713732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Chen, H., Zha, J. et al. Research progress on low dielectric constant modification of cellulose insulating paper for power transformers. Front. Chem. Sci. Eng. 17, 991–1009 (2023). https://doi.org/10.1007/s11705-022-2259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2259-7

Keywords

Navigation