Skip to main content
Log in

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, metal-organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn-Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co-Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzen-etetracarboxylate linker to form Fe2M-PCN-Fe2M is explored. Compared with Fe2Mn-PCN-Fe2Mn, Fe2Co-PCN-Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co-PCN-Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co-PCN-Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li N, Nam Y, Lee J Y. Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514: 146073

    Article  CAS  Google Scholar 

  2. Zheng X, Cao X, Sun Z, Zeng K, Yan J, Strasser P, Chen X, Sun S, Yang R. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 272: 118967

    Article  CAS  Google Scholar 

  3. Deng L, Yang Z, Li R, Chen B, Jia Q, Zhu Y, Xia Y. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499

    Article  CAS  Google Scholar 

  4. Koper M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chemical Science, 2013, 4(7): 2710–2723

    Article  CAS  Google Scholar 

  5. Sun F, Li C, Li B, Lin Y. Amorphous MoS: X developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(44): 23103–23114

    Article  CAS  Google Scholar 

  6. Chen X. Oxygen reduction reaction on cobalt-(n)pyrrole clusters from DFT studies. RSC Advances, 2016, 6(7): 5535–5540

    Article  CAS  Google Scholar 

  7. Zhang S, Lv F, Zhang X, Zhang Y, Zhu H, Xing H, Mu Z, Li J, Guo S, Wang E. Ni@RuM (M = Ni or Co) core@shell nanocrystals with high mass activity for overall water-splitting catalysis. Science China Materials, 2019, 62(12): 1868–1876

    Article  CAS  Google Scholar 

  8. Lu X, Ge L, Yang P, Levin O, Kondratiev V, Qu Z, Liu L, Zhang J, An M. N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn-air batteries. Applied Surface Science, 2021, 562: 150114

    Article  CAS  Google Scholar 

  9. Yu X H, Yi J L, Zhang R L, Wang F Y, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407

    Article  CAS  Google Scholar 

  10. Sun C, Li Z, Yang J, Wang S, Zhong X, Wang L. Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction. Catalysis Today, 2020, 353: 279–286

    Article  CAS  Google Scholar 

  11. Zhang Y, Chen X, Zhang H, Ge X. Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. Journal of Colloid and Interface Science, 2022, 609: 130–138

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Sun F, Bai F, Xie Z. DFT study of the two dimensional metal-organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471: 256–262

    Article  CAS  Google Scholar 

  13. Zhang H, Zhao W, Wu Y, Wang Y, Zou M, Cao A. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium-sulfur battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(15): 9195–9201

    Article  CAS  Google Scholar 

  14. Witman M, Ling S, Anderson S, Tong L, Stylianou K C, Slater B, Smit B, Haranczyk M. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7(9): 6263–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ban Y, Zhao M, Yang W. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188–215

    Article  CAS  Google Scholar 

  16. Zhang Z, Chen Y, Wang Z, Hu C, Ma D, Chen W, Ao T. Effective and structure-controlled adsorption of tetracycline hydrochloride from aqueous solution by using Fe-based metal-organic frameworks. Applied Surface Science, 2021, 542: 148662

    Article  CAS  Google Scholar 

  17. Gu M, Wang S C, Chen C, Xiong D, Yi F Y. Iron-based metal-organic framework system as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions. Inorganic Chemistry, 2020, 59(9): 6078–6086

    Article  CAS  PubMed  Google Scholar 

  18. Shao Q, Yang J, Huang X. The design of water oxidation electrocatalysts from nanoscale metal-organic frameworks. Chemistry, 2018, 24(27): 15143–15155

    Article  CAS  PubMed  Google Scholar 

  19. Gao Z, Yu Z W, Liu F Q, Yang C, Yuan Y H, Yu Y, Luo F. Stable iron hydroxide nanosheets@cobalt-metal-organic-framework heterostructure for efficient electrocatalytic oxygen evolution. ChemSusChem, 2019, 12(20): 4623–4628

    Article  CAS  PubMed  Google Scholar 

  20. Kirchon A, Zhang P, Li J, Joseph E A, Chen W, Zhou H C. Effect of isomorphic metal substitution on the fenton and photo-fenton degradation of methylene blue using Fe-based metal-organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(8): 9292–9299

    Article  CAS  Google Scholar 

  21. Gopalsamy K, Babarao R. Heterometallic metal organic frameworks for air separation: a computational study. Industrial & Engineering Chemistry Research, 2020, 59(35): 15718–15731

    Article  CAS  Google Scholar 

  22. Li S, Gao Y, Li N, Ge L, Bu X, Feng P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy & Environmental Science, 2021, 14(4): 1897–1927

    Article  CAS  Google Scholar 

  23. Senthil Raja D, Lin H W, Lu S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57: 1–13

    Article  CAS  Google Scholar 

  24. Zhou W, Huang D D, Wu Y P, Zhao J, Wu T, Zhang J, Li D S, Sun C, Feng P, Bu X. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2019, 58(13): 4227–4231

    Article  CAS  PubMed  Google Scholar 

  25. Wang X L, Dong L Z, Qiao M, Tang Y J, Liu J, Li Y, Li S L, Su J X, Lan Y Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angewandte Chemie International Edition, 2018, 57(31): 9660–9664

    Article  CAS  PubMed  Google Scholar 

  26. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3′,5,5′-azobenzenetetracarboxylic acid. CrystEngComm, 2008, 10(10): 1395–1403

    Article  CAS  Google Scholar 

  27. Li Y P, Zhang L J, Ji W J. Synthesis, characterization, crystal structure of magnesium compound based 3,3′,5,5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure, 2017, 1133: 607–614

    Article  CAS  Google Scholar 

  28. Osta R E, Frigoli M, Marrot J, Guillou N, Chevreau H, Walton R I, Millange F. A lithiumeorganic framework with coordinatively unsaturated metal sites that reversibly binds water. Chemical Communications, 2012, 48(86): 10639–10641

    Article  PubMed  Google Scholar 

  29. Saha D, Maity T, Koner S. A magnesium-based multifunctional metal-organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Transactions, 2013, 42(38): 13912–13922

    Article  CAS  PubMed  Google Scholar 

  30. Dong H, Zhang X, Yan X C, Wang Y X, Sun X, Zhang G, Feng Y, Zhang F M. Mixed-metal-cluster strategy for boosting electrocatalytic oxygen evolution reaction of robust metal-organic frameworks. ACS Applied Materials & Interfaces, 2019, 11(48): 45080–45086

    Article  CAS  Google Scholar 

  31. Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    Article  CAS  Google Scholar 

  32. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. Dong L Z, Zhang L, Liu J, Huang Q, Lu M, Ji W X, Lan Y Q. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angewandte Chemie International Edition, 2020, 59(7): 2659–2663

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Ge F, Chang J, Lai N. Exploring the catalytic activity of metal-fullerene C58M (M = Mn, Fe, Co, Ni, and Cu) toward oxygen reduction and CO oxidation by density functional theory. International Journal of Energy Research, 2019, 43(13): 7375–7383

    CAS  Google Scholar 

  35. Modak B, Srinivasu K, Ghosh S K. Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. International Journal of Hydrogen Energy, 2017, 42(4): 2278–2287

    Article  CAS  Google Scholar 

  36. Calle-Vallejo F, Martínez J I, Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13(34): 15639–15643

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Zhang H, Li X. Mechanisms of fullerene and single-walled carbon nanotube composite as the metal-free multifunctional electrocatalyst for the oxygen reduction, oxygen evolution, and hydrogen evolution. Molecular Catalysis, 2021, 502: 111383

    Article  CAS  Google Scholar 

  38. Zhao X, Liu X, Huang B, Wang P, Pei Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24583–24593

    Article  CAS  Google Scholar 

  39. Ma Y, Jin F, Hu Y H. Bifunctional electrocatalysts for oxygen reduction and oxygen evolution: a theoretical study on 2D metallic WO2-supported single atom (Fe, Co, or Ni) catalysts. Physical Chemistry Chemical Physics, 2021, 23(24): 13687–13695

    Article  CAS  PubMed  Google Scholar 

  40. Wei B, Fu Z, Legut D, Germann T C, Du S, Zhang H, Francisco J S, Zhang R. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Advanced Materials, 2021, 33(40): 2102595

    Article  CAS  Google Scholar 

  41. Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chemical Communications, 2006(3): 284–286

  42. Chen X, Sun F, Chang J. Cobalt or nickel doped SiC nanocages as efficient electrocatalyst for oxygen reduction reaction: a computational prediction. Journal of the Electrochemical Society, 2017, 164(6): F616–F619

    Article  CAS  Google Scholar 

  43. Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Nørskov J K. Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607(1–2): 83–89

    Article  CAS  Google Scholar 

  44. Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302–2312

    Article  CAS  PubMed  Google Scholar 

  45. He T, Matta S K, Will G, Du A. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods, 2019, 3(9): 1800419

    Article  Google Scholar 

  46. Chen X, Huang S, Zhang H. Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: a density functional theory study. Journal of Alloys and Compounds, 2022, 894: 162508

    Article  CAS  Google Scholar 

  47. Aihara J I. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A, 1999, 103(37): 7487–7495

    Article  CAS  Google Scholar 

  48. Ge F, Qiao Q, Chen X, Wu Y. Probing the catalytic activity of M-N4xOx embedded graphene for the oxygen reduction reaction by density functional theory. Frontiers of Chemical Science and Engineering, 2020, 15(5): 1206–1216

    Article  Google Scholar 

  49. Morales D M, Kazakova M A, Dieckhöfer S, Selyutin A G, Golubtsov G V, Schuhmann W, Masa J. Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Advanced Functional Materials, 2020, 30(6): 1905992

    Article  CAS  Google Scholar 

  50. Fu G, Cui Z, Chen Y, Li Y, Tang Y, Goodenough J B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Advanced Energy Materials, 2017, 7(1): 1601172

    Article  Google Scholar 

  51. Gorlin Y, Jaramillo T F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. Journal of the American Chemical Society, 2010, 132(39): 13612–13614

    Article  CAS  PubMed  Google Scholar 

  52. Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of Sichuan Province (Grant No. 2022YFS0447), the Local Science and Technology Development Fund Projects Guided by the Central Government of China (Grant No. 2021ZYD0060), the Science and Technology Project of Southwest Petroleum University (Grant No. 2021JBGS03), the Special Project of Science and Technology Strategic Cooperation between Nanchong City and Southwest Petroleum University (Grant No. SXQHJH064), and the Postgraduate Research and Innovation Fund of Southwest Petroleum University (Grant No. 2021CXYB14). We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Electronic Supplementary Material

11705_2022_2247_MOESM1_ESM.pdf

Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Luo, L., Huang, S. et al. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study. Front. Chem. Sci. Eng. 17, 570–580 (2023). https://doi.org/10.1007/s11705-022-2247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2247-y

Keywords

Navigation