Skip to main content
Log in

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Min H, Kim M, Lee S U, Kim H, Sang I S. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753

    Article  CAS  PubMed  Google Scholar 

  2. Cai Y Y, Zhang Z B, Zhou Y, Liu H, Qin Q Q, Lu X B, Gao X S, Shui L L, Wu S J, Liu J M. Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta, 2018, 261: 445–453

    Article  CAS  Google Scholar 

  3. Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances. Rare Metals, 2021, 40(9): 2402–2414

    Article  CAS  Google Scholar 

  4. Wang Y Q, Yang L, Chunxiang D A, Gang C, Ai J L, Wang X F. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15(1): 180–186

    Article  CAS  Google Scholar 

  5. Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan X S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. Journal of Power Sources, 2021, 494(15): 229781

    Article  CAS  Google Scholar 

  6. Deretzis I, Smecca E, Mannino G, La Magna A, Miyasaka T, Alberti A. Stability and degradation in hybrid perovskites: is the glass half-empty or half-full? Journal of Physical Chemistry Letters, 2018, 9(11): 3000–3007

    Article  CAS  PubMed  Google Scholar 

  7. Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379

    Article  CAS  PubMed  Google Scholar 

  8. Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J. All-inorganic perovskite solar cells. Journal of the American Chemical Society, 2016, 138(49): 15829–15832

    Article  CAS  PubMed  Google Scholar 

  9. Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172

    Article  CAS  PubMed  Google Scholar 

  10. Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells efficient CsPbBr3 cells? Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456

    Article  CAS  PubMed  Google Scholar 

  11. Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52: 239–245

    Article  CAS  Google Scholar 

  12. Liang J, Liu J, Jin Z. All-inorganic halide perovskites for optoelectronics: progress and prospects. Solar RRL, 2017, 1(10): 1700086

    Article  Google Scholar 

  13. Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L, Chen T, Tie Z, Liu J, Jin Z. Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9(33): 11841–11845

    Article  CAS  PubMed  Google Scholar 

  14. Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Advanced Materials, 2017, 29(12): 1605290

    Article  Google Scholar 

  15. Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066

    Article  Google Scholar 

  16. Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. Journal of the American Chemical Society, 2017, 139(40): 14009–14012

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Zhang X Z, Xu X X, Tang J, Wu J H, Lan Z. CH3NH3Br additive for enhanced photovoltaic performance and air stability of planar perovskite solar cells prepared by two-step dipping method. Energy Technology, 2017, 5(10): 1887–1894

    Article  CAS  Google Scholar 

  18. Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2018, 2(10): 1800164

    Article  Google Scholar 

  19. Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu S F. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16): 1706576

    Article  Google Scholar 

  20. Bu F, He B L, Ding Y, Li X K, Sun X M, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205: 110267

    Article  CAS  Google Scholar 

  21. Kırbıyık Ç, Toprak A, Başlak C, Kuş M, Ersöz M. Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation. Journal of Alloys and Compounds, 2020, 832: 154897

    Article  Google Scholar 

  22. Yuan H W, Zhao Y Y, Duan J L, He B L, Jiao Z B, Tang Q W. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochimica Acta, 2018, 279: 84–90

    Article  CAS  Google Scholar 

  23. Pang B L, Dong L F, Ma S, Dong H Z, Yu L Y. Performance of FTO-free conductive graphene-based counter electrodes for dye-sensitized solar cells. RSC Advances, 2016, 6(47): 41287–41293

    Article  CAS  Google Scholar 

  24. Wang Y Y, Bao X C, Pang B L, Zhu Q Q, Wang J Y, Zhu D Q, Yu L Y, Yang R Q, Dong L F. Solution-processed functionalized reduced graphene oxide—an efficient stable electron buffer layer for high-performance solar cells. Carbon, 2018, 131: 31–37

    Article  CAS  Google Scholar 

  25. Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano, 2018, 12(11): 10736–10754

    Article  CAS  PubMed  Google Scholar 

  26. Duan J, Zhao Y, He B, Tang Q. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber. Small, 2018, 14(20): 1704443

    Article  Google Scholar 

  27. Xu S J, Li D, Wu P Y. One-pot, facile, and versatile synthesis of monolayer MosS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2015, 25(7): 1127–1136

    Article  CAS  Google Scholar 

  28. Cardona C M, Li W, Kaifer A E, Stockdale D, Bazan G C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Advanced Materials, 2011, 23(20): 2367–2371

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 2011, 23(6): 776–780

    Article  PubMed  Google Scholar 

  30. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. Journal of the American Chemical Society, 2014, 136(10): 3760–3763

    Article  CAS  PubMed  Google Scholar 

  31. Moriya M, Hirotani D, Ohta T, Ogomi Y, Shen Q, Ripolles T S, Yoshino K, Toyoda T, Minemoto T, Hayase S. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 2016, 9(18): 2643

    Article  Google Scholar 

  32. Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6450–6458

    Article  CAS  Google Scholar 

  33. Duan J, Zhao Y, He B, Tang Q. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angewandte Chemie International Edition, 2018, 57(14): 3787–3791

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S, Hofkens J, Yu D, Zhao Q, Sargent E H. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9(1): 1607

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chang J, Zhu H, Li B, Isikgor F H, Hao Y, Xu Q, Ouyang J. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(3): 887–893

    Article  CAS  Google Scholar 

  36. Mu X H, Yu X G, Xu D K, Shen X L, Xia Z H, He H, Zhu H Y, Xie J S, Sun B Q, Yang D R. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy, 2015, 16: 54–61

    Article  CAS  Google Scholar 

  37. Liu X Y, Tan X H, Liu Z Y, Sun B, Li J J, Xi S, Shi T L, Liao G G. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells. Journal of Power Sources, 2019, 443: 227269

    Article  CAS  Google Scholar 

  38. Bouzidi K, Chegaar M, Bouhemadou A. Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials and Solar Cells, 2007, 91(18): 1647–1651

    Article  CAS  Google Scholar 

  39. Tong G Q, Chen T T, Li H, Qiu L B, Liu Z H, Dang Y Y, Song W T, Luis K O, Jiang Y, Qi Y B. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65: 104015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 21776147, 21905153 and 61604086), the Qingdao Municipal Science and Technology Bureau (Grant No. 19-6-1-91-nsh) and A Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA013). Lifeng Dong also thanks financial support from the Malmstrom Endowed Fund at Hamline University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beili Pang, Liyan Yu or Lifeng Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Che, G., Cui, W. et al. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer. Front. Chem. Sci. Eng. 17, 516–524 (2023). https://doi.org/10.1007/s11705-022-2238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2238-z

Keywords

Navigation