Skip to main content
Log in

Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Selective separation of dissolved tungsten and vanadium is of great significance for the utilization of the secondary resources of these elements. In this work, selective removal of vanadium from tungstate solutions via microbubble floating-extraction was systematically investigated. The results indicated that vanadium can be more easily mineralized over tungsten from tungstate solutions using methyl trioctyl ammonium chloride as mineralization reagent under weak alkaline conditions. Owing to the higher bubble and interface mass transfer rates, high-efficiency enrichment and deep separation of vanadium could be achieved easily. Additionally, the deep recovery of tungsten and vanadium from the floated organic phase could be easily realized using a mixed solution of sodium hydroxide and sodium chloride as stripping agents. The separation mechanism mainly included the formation of hydrophobic complexes, their attachment on the surface of rising bubbles, and their mass transfer at the oil-water interface. Under the optimal conditions, the removal efficiency of vanadium reached 98.5% with tungsten loss below 8% after two-stage microbubble floating-extraction. Therefore, the microbubble floating-extraction could be an efficient approach for separating selectively vanadium from tungstate solutions, exhibiting outstanding advantages of high separation efficiency and low consumption of organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen T H, Lee M S. Separation of vanadium and tungsten from sodium molybdate solution by solvent extraction. Industrial & Engineering Chemistry Research, 2014, 53(20): 8608–8614

    Article  CAS  Google Scholar 

  2. Zhang W J, Chen Y Q, Che J Y, Wang C Y, Ma B Z. Green leaching of tungsten from synthetic scheelite with sulfuric acid-hydrogen peroxide solution to prepare tungstic acid. Separation and Purification Technology, 2020, 241: 116752

    Article  CAS  Google Scholar 

  3. Liu Z S, Huang J, Zhang Y M, Liu T, Hu P C, Liu H, Zheng Q S. Separation and recovery of vanadium and iron from oxalic-acid-based shale leachate by coextraction and stepwise stripping. Separation and Purification Technology, 2020, 244: 116532

    Article  CAS  Google Scholar 

  4. Truong H T, Nguyen T H, Lee M S. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction. Hydrometallurgy, 2017, 171: 298–305

    Article  CAS  Google Scholar 

  5. Choi I H, Kim H R, Moon G, Jyothi R K, Lee J Y. Spent V2O5–WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching. Hydrometallurgy, 2018, 175: 292–299

    Article  CAS  Google Scholar 

  6. Zhang Q J, Wu Y F, Yuan H R. Recycling strategies of spent V2O5–WO3/TiO2 catalyst: a review. Resources, Conservation and Recycling, 2020, 161: 104983

    Article  Google Scholar 

  7. Ferella F. A review on management and recycling of spent selective catalytic reduction catalysts. Journal of Cleaner Production, 2020, 246: 118990

    Article  CAS  Google Scholar 

  8. Zhang J L, Zhao Z W. Thermodynamic analysis of tungsten–vanadium separation in W(VI)-V(V)-H2O system. Chinese Journal of Nonferrous Metals, 2014, 24(6): 1656–1662 (in Chinese)

    CAS  Google Scholar 

  9. Luo L, Liu K J, Shibayama A, Yen W T, Fujita T, Shindo O, Katai T. Recovery of tungsten and vanadium from tungsten alloy scrap. Hydrometallurgy, 2004, 72(1–2): 1–8

    Article  CAS  Google Scholar 

  10. Luo L, Miyazaki T, Shibayama A, Yen W T, Fujita T. Separation of vanadium and tungsten from a sodium tungstate solution. Canadian Metallurgical Quarterly, 2003, 42(4): 411–420

    Article  CAS  Google Scholar 

  11. Zhu X Z, Huo G S, Ni J, Song Q. Removal of tungsten and vanadium from molybdate solutions using ion exchange resin. Transactions of Nonferrous Metals Society of China, 2017, 27(12): 2727–2732

    Article  CAS  Google Scholar 

  12. Wu W C, Tsai T Y, Shen Y H. Tungsten recovery from spent SCR catalyst using alkaline leaching and ion exchange. Minerals, 2016, 6(4): 107–117

    Article  Google Scholar 

  13. Wang L P, Zhang G Q, Guan W J, Zeng L, Zhou Q, Xia Y, Wang Q, Li Q G, Cao Z Y. Complete removal of trace vanadium from ammonium tungstate solutions by solvent extraction. Hydrometallurgy, 2018, 179: 268–273

    Article  CAS  Google Scholar 

  14. Nguyen T H, Lee M S. A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction. Geosystem Engineering, 2016, 19(5): 247–259

    Article  CAS  Google Scholar 

  15. Zeng L, Yong C Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Part II: separation and purification. Hydrometallurgy, 2009, 98(1–2): 10–20

    Article  CAS  Google Scholar 

  16. Kim J W, Hwang I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins. Journal of Environmental Chemical Engineering, 2018, 6(1): 1100–1108

    Article  CAS  Google Scholar 

  17. Wu J, Wei C, Li X B, Wang S F, Wang M S, Li C X. Selective extraction of Mo using Cyanex-272 and tributyl phosphate from low grade Ni–Mo ore leach liquor. Separation and Purification Technology, 2012, 99: 120–126

    Article  CAS  Google Scholar 

  18. Wilson A M, Bailey P J, Tasker P A, Turkington J R, Grant R A, Love J B. Solvent extraction: the coordination chemistry behind extractive metallurgy. Chemical Society Reviews, 2014, 43(1): 123–134

    Article  CAS  PubMed  Google Scholar 

  19. Huang K, Liu J, Wu H Z, Liu H Z. A new bubbling extraction tower: toward liquid-liquid solvent extraction at large aqueous-to-oil phase ratios. AIChE Journal, 2015, 61(11): 3889–3897

    Article  CAS  Google Scholar 

  20. Liu J, Huang K, Wu H Z, Liu H Z. A feasible strategy for calculating the required mass transfer height of a new bubbling organic liquid membrane extraction tower directly based upon the experimental kinetic data. Industrial & Engineering Chemistry Research, 2016, 55(16): 4426–4434

    Article  CAS  Google Scholar 

  21. Rout P C, Sarangi K. A comparative study on extraction of Mo(VI) using both solvent extraction and hollow fiber membrane technique. Hydrometallurgy, 2013, 133: 149–155

    Article  CAS  Google Scholar 

  22. Liao C S, Cheng F X, Wu S, Yan C H. Review and recent progresses on theory of countercurrent extraction. Journal of the Chinese Society of Rare Earths, 2017, 35: 1–8 (in Chinese)

    Google Scholar 

  23. Wang W T, Sang F N, Xu J H, Wang Y D, Luo G S. The enhancement of liquid-liquid extraction with high phase ratio by microfluidic-based hollow droplet. RSC Advances, 2015, 5(100): 82056–82064

    Article  CAS  Google Scholar 

  24. Liu J, Huang K, Wu X H, Liu H Z. Enrichment of low concentration rare earths from leach solutions of ion-adsorption ores by bubbling organic liquid membrane extraction using N1923. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8070–8078

    Article  CAS  Google Scholar 

  25. Liu J, Huang K, Wu X H, Liu W Q, Song W Y, Liu H Z. Extraction of rare earths using bubbling organic liquid membrane with un-saponified P507. Hydrometallurgy, 2018, 175: 340–347

    Article  CAS  Google Scholar 

  26. Huang Y F, Shi K P, Liu B B, Su S P, Han G H. Research status and prospect of deep separation technology for dissolved molybdenum and vanadium. Conservation and Utilization of Mineral, 2021, 41(5): 65–72 (in Chinese)

    Google Scholar 

  27. Han G H, Wang H Y, Su S P, Huang Y F, Liu B B. Research progress and discussion on selective separation technology of dissolved tungsten and vanadium. Chinese Journal of Nonferrous Metals, 2021, 31(11): 3380–3395 (in Chinese)

    Google Scholar 

  28. Han G H, Wang J W, Liu B B, Sun H, Huang Y F. Progress and prospect of cobalt recovery from cobalt slag produced by zinc hydrometallurgy. Journal of Guizhou University, 2022, 39(2): 1–6

    Google Scholar 

  29. Su S P, Huang Y F, Liu B B, Han G H, Xue Y B, Wang Y Z. A feasible strategy for deeply separating low concentrations of molybdenum from tungstate solutions with a high-efficiency microbubble floating-extraction concept. ACS Sustainable Chemistry & Engineering, 2021, 10(1): 146–158

    Article  Google Scholar 

  30. Kang J H, Hu Y H, Sun W, Liu R Q, Gao Z Y, Guan Q J, Tang H H, Yin Z G. Utilisation of FGD gypsum for silicate removal from scheelite flotation wastewater. Chemical Engineering Journal, 2018, 341: 272–279

    Article  CAS  Google Scholar 

  31. Chen J H. The interaction of flotation reagents with metal ions in mineral surfaces: a perspective from coordination chemistry. Minerals Engineering, 2021, 171: 107067

    Article  CAS  Google Scholar 

  32. Valsaraj K T, Porter J L, Liljenfeldt E K, Springer C. Solvent sublation for the removal of hydrophobic chlorinated compounds from aqueous solutions. Water Research, 1986, 20(9): 1161–1175

    Article  CAS  Google Scholar 

  33. Sola A B C, Parhi P K, Lee J Y, Kang H N, Jyothi R K. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using Aliquat 336. RSC Advances, 2020, 10(34): 19736–19746

    Article  Google Scholar 

  34. Huang Y F, Zhang B, Liu B B, Su S P, Han G H, Guo H, Cao Y J. Clean and deep separation of molybdenum and rhenium from ultra-low concentration solutions via vapidly stepwise selective coagulation and flocculation precipitation. Separation and Purification Technology, 2021, 267: 118632

    Article  CAS  Google Scholar 

  35. Zhang J L, Zhao Z W, Chen X Y, Liu X H. Thermodynamic analysis for separation of tungsten and molybdenum in W–Mo–H2O system. Chinese Journal of Nonferrous Metals, 2013, 23(5): 1463–1470 (in Chinese)

    CAS  Google Scholar 

  36. Wu H Y, Wang W J, Huang Y F, Han G H, Yang S Z, Su S P, Sana H, Peng W J, Cao Y J, Liu J T. Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants. Journal of Hazardous Materials, 2019, 371: 592–602

    Article  CAS  PubMed  Google Scholar 

  37. Jeon J H, Sola A B C, Lee J Y, Koduru J R, Jyothi R K. Separation of vanadium and tungsten from synthetic and spent catalyst leach solutions using an ion-exchange resin. RSC Advances, 2022, 12(6): 3635–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiong P, Zhang Y M, Huang J, Bao S X, Yang X, Shen C. High-efficient and selective extraction of vanadium(V) with N235-P507 synergistic extraction system. Chemical Engineering Research & Design, 2017, 120: 284–290

    Article  CAS  Google Scholar 

  39. Kovács T N, Pokol G, Gáber F, Nagy D, Igricz T, Lukács I E, Fogarassy Z, Balázsi K, Szilágyi I M. Preparation of iron tungstate (FeWO4) nanosheets by hydrothermal method. Materials Research Bulletin, 2017, 95: 563–569

    Article  Google Scholar 

  40. Rakshit S, Sallman B, Davantes A, Lefevre G. Tungstate(VI) sorption on hematite: an in situ ATR-FTIR probe on the mechanism. Chemosphere, 2017, 168: 685–691

    Article  CAS  PubMed  Google Scholar 

  41. Jayadas S, Reddy M L. Solvent extraction separation of vanadium(V) from multivalent metal chloride solutions using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Journal of Chemical Technology and Biotechnology, 2002, 77(10): 1149–1156

    Article  CAS  Google Scholar 

  42. Mahandra H, Singh R, Gupta B. Recovery of vanadium(V) from synthetic and real leach solutions of spent catalyst by solvent extraction using Cyphos IL 104. Hydrometallurgy, 2020, 196: 105405

    Article  CAS  Google Scholar 

  43. Bal Y, Bal K E, Cote G, Lallam A. Characterization of the solid third phases that precipitate from the organic solutions of Aliquat® 336 after extraction of molybdenum(VI) and vanadium(V). Hydrometallurgy, 2004, 75(1–4): 123–134

    Article  CAS  Google Scholar 

  44. Paul S, Berrier E, França M C K, Eon J G. Oxidative dehydrogenation of propane under steady-state and transient regimes over alumina-supported catalysts prepared from mixed V2W4O194− hexametalate precursors. Journal of Natural Gas Chemistry, 2010, 19(2): 123–133

    Article  CAS  Google Scholar 

  45. Qi Y F, Wang E B, Li J, Li Y G. Two organic-inorganic poly (pseudo-rotaxane)-like composite solids constructed from polyoxovanadates and silver organonitrogen polymers. Journal of Solid State Chemistry, 2009, 182(10): 2640–2645

    Article  CAS  Google Scholar 

  46. Nayl A A, Aly H F. Solvent extraction of V(V) and Cr(III) from acidic leach liquors of ilmenite using Aliquat 336. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4183–4191

    Article  CAS  Google Scholar 

  47. Su S P, Wang W J, Liu B B, Huang Y F, Yang S Z, Wu H Y, Han G H, Cao Y J. Enhancing surface interactions between humic surfactants and cupric ion: DFT computations coupled with MD simulations study. Journal of Molecular Liquids, 2021, 324: 114781

    Article  CAS  Google Scholar 

  48. Bi P Y, Dong H R, Dong J. The recent progress of solvent sublation. Journal of Chromatography A, 2010, 1217(16): 2716–2725

    Article  CAS  PubMed  Google Scholar 

  49. Li Q, Xiao L S, Zhang G Q, Cao Z Y, Li Q G, Zeng L, Guan W J. Vanadium separation from sodium tungstate solution by solvent extraction with quaternary ammonium salt of N263. Rare Metals and Cemented Carbides, 2017, 45(2): 20–27 (in Chinese)

    CAS  Google Scholar 

  50. Wang H Y, Han G H, Huang Y F, Su S P. Solvent extraction separation of tungsten and vanadium from simulated leaching solution of spent SCR catalyst. In: Ouchi T, Azimi G, Forsberg K, Kim H, Alam S, Neelameggham N, Baba A, Peng H, eds. Rare Metal Technology 2022. Berlin: Springer, 2022

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Original Exploration Project of China (Grant No. 52150079), the National Natural Science Foundation of China (Grant Nos. U2004215, 51974280 and 51774252), the Educational Commission Fund of Henan Province of China (Grant Nos. 20HASTIT012, 18A450001 and 17A450001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihong Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Su, S., Huang, Y. et al. Highly efficient and selective removal of vanadium from tungstate solutions by microbubble floating-extraction. Front. Chem. Sci. Eng. 17, 581–593 (2023). https://doi.org/10.1007/s11705-022-2235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2235-2

Keywords

Navigation